CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 858-867.DOI: 10.11949/0438-1157.20240654
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xin YING1,2(), Miao DU4(
), Pengju PAN2,3, Guorong SHAN2,3(
)
Received:
2024-06-14
Revised:
2024-07-21
Online:
2025-03-10
Published:
2025-02-25
Contact:
Miao DU, Guorong SHAN
应昕1,2(), 杜淼4(
), 潘鹏举2,3, 单国荣2,3(
)
通讯作者:
杜淼,单国荣
作者简介:
应昕(2000—),男,硕士研究生,yingxin@zju.edu.cn
CLC Number:
Xin YING, Miao DU, Pengju PAN, Guorong SHAN. Synthesis, structure and properties of high refrective index polythiourethane[J]. CIESC Journal, 2025, 76(2): 858-867.
应昕, 杜淼, 潘鹏举, 单国荣. 高折射率聚硫氨酯的合成、结构与性能[J]. 化工学报, 2025, 76(2): 858-867.
Property | PTU1 | PTU2 | PTU3 | PTU4 | PTU5 | PTU6 |
---|---|---|---|---|---|---|
composition | BES-XDI | BES-TDI | BES-MDI | PETMP-XDI | PETMP-MDI | BMMD-XDI |
sulf content/%(mass) | 29.48 | 30.66 | 25.16 | 14.80 | 12.94 | 25.87 |
refractive index(589 nm) | 1.6560 | 1.6785 | 1.6862 | 1.5912 | 1.6261 | 1.6596 |
Abbe’s number | 31.31 | 25.53 | 23.90 | 34.44 | 24.81 | 32.25 |
total transmittance/% | 87.67±0.64 | 86.81±0.77 | 86.48±0.75 | 89.20±0.58 | 84.42±0.86 | 87.11±0.73 |
haze/% | 0.22±0.08 | 4.1±0.13 | 0.06±0.02 | 2.07±0.09 | 18.78±0.20 | 0.71±0.11 |
λUV/nm | 290 | 320 | 313 | 285 | 317 | 282 |
Tg(DSC)/℃ | 69.6 | 122.5 | 125.3 | 70.9 | 124.3 | 98.4 |
Tg(DMA)/℃ | 96.6 | 122.4 | 140.7 | 99.1 | 80.7/134.7 | — |
FWHM/℃ | 14.4 | 31.8 | 23.2 | 11.6 | 46.4/29.3 | — |
Td5%/℃ | 280 | 262.1 | 268.6 | 290.6 | 279.6 | 282.9 |
Tdmax/℃ | 301.7 | 283.9 | 295.4 | 303.4 | 350.8 | 312.3 |
tensile strength/MPa | 104.74±9.32 | 50.31±4.01 | 79.57±4.12 | 94.46±9.52 | 79.74±1.58 | — |
tensile strength at break/MPa | 104.74±9.32 | 50.31±4.01 | 79.57±4.12 | 63.80±3.38 | 69.50±3.94 | — |
tensile strain at break/% | 10.04±1.54 | 4.78±1.37 | 13.07+2.91 | 16.55±2.27 | 27.86±3.29 | — |
tensile yield strength/MPa | — | — | — | 94.46±9.52 | 79.74±1.58 | — |
tensile strain at yield/% | — | — | — | 9.92±0.49 | 11.61±0.45 | — |
pencil hardness | 2H | 2H | 2H | 2H | 2H | 3H |
density/(g/cm3) | 1.3633 | 1.3783 | 1.3417 | 1.3958 | 1.3846 | 1.4230 |
contact angle/(°) | 94.87±2.28 | 94.02±5.34 | 92.35±3.47 | 94.52±1.18 | 77.24±1.69 | 83.95±0.69 |
Table 1 Composition, optical, thermal and mechanical properties of polythiourethane of different systems
Property | PTU1 | PTU2 | PTU3 | PTU4 | PTU5 | PTU6 |
---|---|---|---|---|---|---|
composition | BES-XDI | BES-TDI | BES-MDI | PETMP-XDI | PETMP-MDI | BMMD-XDI |
sulf content/%(mass) | 29.48 | 30.66 | 25.16 | 14.80 | 12.94 | 25.87 |
refractive index(589 nm) | 1.6560 | 1.6785 | 1.6862 | 1.5912 | 1.6261 | 1.6596 |
Abbe’s number | 31.31 | 25.53 | 23.90 | 34.44 | 24.81 | 32.25 |
total transmittance/% | 87.67±0.64 | 86.81±0.77 | 86.48±0.75 | 89.20±0.58 | 84.42±0.86 | 87.11±0.73 |
haze/% | 0.22±0.08 | 4.1±0.13 | 0.06±0.02 | 2.07±0.09 | 18.78±0.20 | 0.71±0.11 |
λUV/nm | 290 | 320 | 313 | 285 | 317 | 282 |
Tg(DSC)/℃ | 69.6 | 122.5 | 125.3 | 70.9 | 124.3 | 98.4 |
Tg(DMA)/℃ | 96.6 | 122.4 | 140.7 | 99.1 | 80.7/134.7 | — |
FWHM/℃ | 14.4 | 31.8 | 23.2 | 11.6 | 46.4/29.3 | — |
Td5%/℃ | 280 | 262.1 | 268.6 | 290.6 | 279.6 | 282.9 |
Tdmax/℃ | 301.7 | 283.9 | 295.4 | 303.4 | 350.8 | 312.3 |
tensile strength/MPa | 104.74±9.32 | 50.31±4.01 | 79.57±4.12 | 94.46±9.52 | 79.74±1.58 | — |
tensile strength at break/MPa | 104.74±9.32 | 50.31±4.01 | 79.57±4.12 | 63.80±3.38 | 69.50±3.94 | — |
tensile strain at break/% | 10.04±1.54 | 4.78±1.37 | 13.07+2.91 | 16.55±2.27 | 27.86±3.29 | — |
tensile yield strength/MPa | — | — | — | 94.46±9.52 | 79.74±1.58 | — |
tensile strain at yield/% | — | — | — | 9.92±0.49 | 11.61±0.45 | — |
pencil hardness | 2H | 2H | 2H | 2H | 2H | 3H |
density/(g/cm3) | 1.3633 | 1.3783 | 1.3417 | 1.3958 | 1.3846 | 1.4230 |
contact angle/(°) | 94.87±2.28 | 94.02±5.34 | 92.35±3.47 | 94.52±1.18 | 77.24±1.69 | 83.95±0.69 |
Property | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
—SH/—NCO | 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | 1.20 | 1.30 | 1.40 | 1.50 |
refractive index(589 nm) | 1.6848 | 1.6859 | 1.6862 | 1.6871 | 1.6880 | 1.6886 | 1.6895 | 1.6898 | 1.6900 |
Abbe’s number | 23.48 | 23.48 | 23.90 | 23.95 | 24.00 | 24.35 | 24.05 | 24.41 | 24.46 |
total transmittance/% | 86.62±0.83 | 86.50±0.69 | 86.48±0.75 | 86.48±0.62 | 86.35±0.87 | 86.34±0.93 | 86.50±0.76 | 86.20±0.68 | 86.36±0.91 |
Haze/% | 0.09±0.02 | 0.17±0.04 | 0.06±0.04 | 0.04±0.03 | 0.16±0.05 | 0.50±0.08 | 0.59±0.06 | 0.47±0.09 | 1.57±0.10 |
λUV/nm | 313 | 313 | 313 | 312 | 312 | 311 | 311 | 311 | 311 |
Tg(DSC)/℃ | 131.3 | 127.8 | 125.3 | 119.9 | 119.4 | 101.1 | 98.0 | 89.7 | 69.4 |
Tg(DMA)/℃ | 153.3 | 147.2 | 139.5 | 131.9 | 129.1 | 116.6 | 107.2 | 102.3 | 89.7 |
FWHM/℃ | 33.5 | 38.7 | 36.0 | 30.0 | 28.5 | 23.3 | 19.7 | 17.5 | 19.1 |
Td5%/℃ | 266.3 | 268.6 | 268.6 | 268.0 | 271.8 | 270.5 | 269.2 | 269.0 | 266.2 |
Tdmax/℃ | 290.1 | 292.5 | 295.4 | 293.6 | 297.1 | 290.1 | 290.9 | 287.6 | 286.0 |
tensile strength/MPa | 60.31±3.25 | 72.06±3.42 | 79.57±4.12 | 77.73±5.18 | 73.28±4.72 | 72.12±2.21 | 68.69±3.35 | 67.48±3.72 | 37.48±3.80 |
tensile strain at break/% | 7.45±1.66 | 8.37±1.58 | 13.07±2.91 | 15.7±3.13 | 17.42±2.68 | 16.84±3.89 | 11.58±1.73 | 6.89±1.76 | 4.02±1.30 |
pencil hardness | 2H | 2H | 2H | 2H | 2H | 2H | H | H | HB |
density/(g/cm3) | 1.3356 | 1.3392 | 1.3417 | 1.3463 | 1.3497 | 1.3573 | 1.3625 | 1.3686 | 1.3715 |
contact angle/(°) | 91.60±2.15 | 100.03±1.76 | 92.35±3.47 | 95.34±1.38 | 98.17±1.24 | 93.94±2.91 | 90.95±1.79 | 101.39±1.21 | 97.30±1.41 |
Table 2 Composition, optical, thermal and mechanical properties of polythiourethane with different functional group ratios
Property | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
—SH/—NCO | 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | 1.20 | 1.30 | 1.40 | 1.50 |
refractive index(589 nm) | 1.6848 | 1.6859 | 1.6862 | 1.6871 | 1.6880 | 1.6886 | 1.6895 | 1.6898 | 1.6900 |
Abbe’s number | 23.48 | 23.48 | 23.90 | 23.95 | 24.00 | 24.35 | 24.05 | 24.41 | 24.46 |
total transmittance/% | 86.62±0.83 | 86.50±0.69 | 86.48±0.75 | 86.48±0.62 | 86.35±0.87 | 86.34±0.93 | 86.50±0.76 | 86.20±0.68 | 86.36±0.91 |
Haze/% | 0.09±0.02 | 0.17±0.04 | 0.06±0.04 | 0.04±0.03 | 0.16±0.05 | 0.50±0.08 | 0.59±0.06 | 0.47±0.09 | 1.57±0.10 |
λUV/nm | 313 | 313 | 313 | 312 | 312 | 311 | 311 | 311 | 311 |
Tg(DSC)/℃ | 131.3 | 127.8 | 125.3 | 119.9 | 119.4 | 101.1 | 98.0 | 89.7 | 69.4 |
Tg(DMA)/℃ | 153.3 | 147.2 | 139.5 | 131.9 | 129.1 | 116.6 | 107.2 | 102.3 | 89.7 |
FWHM/℃ | 33.5 | 38.7 | 36.0 | 30.0 | 28.5 | 23.3 | 19.7 | 17.5 | 19.1 |
Td5%/℃ | 266.3 | 268.6 | 268.6 | 268.0 | 271.8 | 270.5 | 269.2 | 269.0 | 266.2 |
Tdmax/℃ | 290.1 | 292.5 | 295.4 | 293.6 | 297.1 | 290.1 | 290.9 | 287.6 | 286.0 |
tensile strength/MPa | 60.31±3.25 | 72.06±3.42 | 79.57±4.12 | 77.73±5.18 | 73.28±4.72 | 72.12±2.21 | 68.69±3.35 | 67.48±3.72 | 37.48±3.80 |
tensile strain at break/% | 7.45±1.66 | 8.37±1.58 | 13.07±2.91 | 15.7±3.13 | 17.42±2.68 | 16.84±3.89 | 11.58±1.73 | 6.89±1.76 | 4.02±1.30 |
pencil hardness | 2H | 2H | 2H | 2H | 2H | 2H | H | H | HB |
density/(g/cm3) | 1.3356 | 1.3392 | 1.3417 | 1.3463 | 1.3497 | 1.3573 | 1.3625 | 1.3686 | 1.3715 |
contact angle/(°) | 91.60±2.15 | 100.03±1.76 | 92.35±3.47 | 95.34±1.38 | 98.17±1.24 | 93.94±2.91 | 90.95±1.79 | 101.39±1.21 | 97.30±1.41 |
1 | Zhou Y T, Zhu Z C, Zhang K, et al. Molecular structure and properties of sulfur-containing high refractive index polymer optical materials[J]. Macromolecular Rapid Communications, 2023, 44(23): e2300411. |
2 | Jang W, Choi K, Choi J S, et al. Transparent, ultrahigh-refractive index polymer film (n ∼1.97) with minimal birefringence (Δn <0.0010) [J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61629-61637. |
3 | Zhang J, Bai T W, Liu W X, et al. All-organic polymeric materials with high refractive index and excellent transparency[J]. Nature Communications, 2023, 14(1): 3524. |
4 | Shim H, Monticone F, Miller O D. Fundamental limits to the refractive index of transparent optical materials[J]. Advanced Materials, 2021, 33(43): e2103946. |
5 | Huo N, Tenhaeff W E. High refractive index polymer thin films by charge-transfer complexation[J]. Macromolecules, 2023, 56(5): 2113-2122. |
6 | Xue S Y, Lei X F, Xiao Y Y, et al. Rapid, mild synthesis of transparent polyimides with high refractive index via thiol-Michael click reaction[J]. ACS Applied Polymer Materials, 2024, 6(4): 2315-2326. |
7 | Dan S M, Gu H M, Tan J J, et al. Transparent epoxy/TiO2 optical hybrid films with tunable refractive index prepared via a simple and efficient way[J]. Progress in Organic Coatings, 2018, 120: 252-259. |
8 | Zhang Q Y, Goh E S M, Beuerman R, et al. Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers[J]. Journal of Applied Polymer Science, 2013, 129(4): 1793-1798. |
9 | Xia Y, Zhang C, Wang J X, et al. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film[J]. Langmuir, 2018, 34(23): 6806-6813. |
10 | Mazumder K, Voit B, Banerjee S. Recent progress in sulfur-containing high refractive index polymers for optical applications[J]. ACS Omega, 2024, 9(6): 6253-6279. |
11 | Fang L X, Sun J, Chen X Y, et al. Phosphorus- and sulfur-containing high-refractive-index polymers with high Tg and transparency derived from a bio-based aldehyde[J]. Macromolecules, 2020, 53(1): 125-131. |
12 | Scheiger J M, Theato P. High Refractive Index Sulfur‐Containing Polymers (HRISPs)[M]. Germany: Wiley, 2021: 305-338. |
13 | Tang Y H, Pina-Hernandez C, Niu Q J, et al. A novel high-refractive index episulfide-thiol polymer for nanoimprinting optical elements[J]. Journal of Materials Chemistry C, 2018, 6(32): 8823-8831. |
14 |
Su Y, Filho E B D S, Peek N, et al. High refractive index polymers (n > 1.7), based on thiol-ene cross-linking of polarizable P![]() ![]() |
15 | Matsumura Y, Horikoshi H, Furukawa K, et al. Synthesis of bismuth-containing polymer films with high refractive index and X-ray shielding property by radical polymerization of styrylbismuthine derivatives[J]. ACS Macro Letters, 2022, 11(6): 723-726. |
16 | Badur T, Dams C, Hampp N. High refractive index polymers by design[J]. Macromolecules, 2018, 51(11): 4220-4228. |
17 | Yang C J, Jenekhe S A. Group contribution to molar refraction and refractive index of conjugated polymers[J]. Chemistry of Materials, 1995, 7(7): 1276-1285. |
18 | Xue S Y, Lei X F, Xiao Y Y, et al. Highly refractive polyimides derived from efficient catalyst-free thiol-yne click polymerization[J]. Macromolecules, 2021, 54(24): 11256-11268. |
19 | Qu T F, Nan G M, Ouyang Y, et al. Structure-property relationship, glass transition, and crystallization behaviors of conjugated polymers[J]. Polymers, 2023, 15(21): 4268. |
20 | Gamardella F, De la Flor S, Ramis X, et al. Recyclable poly(thiourethane) vitrimers with high Tg. Influence of the isocyanate structure[J]. Reactive and Functional Polymers, 2020, 151: 104574. |
21 | Jia Y Y, Shi B J, Jin J S, et al. High refractive index polythiourethane networks with high mechanical property via thiol-isocyanate click reaction[J]. Polymer, 2019, 180: 121746. |
22 | Zhang Y W, Wang Y S, Chen Y Y, et al. High-refractive index polythiourethane resin based on 2,3-bis((2-mercaptoethyl) thio)-1-propanethiol and 1,3-bis(isocyanantomethyl) cyclohexane using tertiary amine catalyst[J]. Journal of Applied Polymer Science, 2021, 138(17): e50278. |
23 | Liu J, Shi Y J, Li J J, et al. Closed-loop recyclable vinylogous carbamothioate-based covalent adaptable networks[J]. Macromolecules, 2023, 56(17): 6644-6654. |
24 | Kultys A, Puszka A. Transparent poly(thiourethane-urethane)s based on dithiol chain extender[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(3): 1427-1439. |
25 | Jeong J E, Lee J W, Bae M J, et al. NIR-triggered high-efficiency self-healable protective optical coating for vision systems[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8510-8520. |
26 | Chen Y Y, Qin Z Y, Tang G F, et al. Balancing optical property and enhancing stability for high-refractive index polythiourethane with assistance of cubic thiol-functionalized silsesquioxanes[J]. ACS Applied Polymer Materials, 2021, 3(1): 153-161. |
27 | Erice A, Ruiz de Luzuriaga A, Azcune I, et al. New injectable and self-healable thermoset polythiourethane based on S-aromatic thiourethane dissociative exchange mechanism[J]. Polymer, 2020, 196: 122461. |
28 | Zeng Y L, Fan L, Deng M, et al. Development of high refractive and high water content polythiourethane/AA hydrogels for potential artificial cornea implants[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69(9): 580-591. |
29 | 慎政焕, 明正焕, 沈钟珉, 等. 聚硫氨酯类塑料镜: 111566518A[P]. 2020-08-21. |
Shen Z H, Ming Z H, Shen Z M, et al. Polythiourethane plastic lens: 111566518A[P]. 2020-08-21. | |
30 | 刘洋, 张建林, 曹帅, 等. 一种高折射率超韧光学树脂材料及其制备方法: 113444247A[P]. 2021-09-28. |
Liu Y, Zhang J L, Cao S, et al. A high refractive index ultra tough optical resin material and its preparation method: 113444247A[P]. 2021-09-28. | |
31 | 张建林, 曹飞羽, 易先君, 等. 光学树脂单体及其制备方法、光学树脂及其制备方法: 111763320B[P]. 2021-09-10. |
Zhang J L, Cao F Y, Yi X J, et al. Optical resin monomer and its preparation method, optical resin and its preparation method: 111763320B[P]. 2021-09-10. | |
32 | 孔凡波, 梁万根, 张建林, 等. 一种高折射率光学树脂材料、其制备方法及应用: 117362565A[P]. 2024-01-09. |
Kong F B, Liang W G, Zhang J L, et al. A high refractive index optical resin material, its preparation method and application: 117362565A[P]. 2024-01-09. | |
33 | 尚永华, 朱付林, 张文强, 等. 一种环己烷二亚甲基二异氰酸酯组合物、改性组合物及聚氨酯树脂和光学树脂: 117801222A[P]. 2024-04-02. |
Shang Y H, Zhu F L, Zhang W Q, et al. A cyclohexane dimethyl diisocyanate composition, modified composition, polyurethane resin, and optical resin: 117801222A[P]. 2024-04-02. |
[1] | Zilin PENG, Lei ZHOU, Qinghang DENG, Guanghua YE, Xinggui ZHOU. Kinetics of 3D NAND flash wet etching with phosphoric acid under the influence of H2SiO3 [J]. CIESC Journal, 2025, 76(2): 645-653. |
[2] | Mengfan YIN, Qian WANG, Tao ZHENG, Kui JI, Shaogui WANG, Hui GUO, Zhiqiang LIN, Rui ZHANG, Hui SUN, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG, Yueping WANG. Process design of 10000 t industrial demonstration of hydrogen production from renewable energy electrolytic water - low temperature and low pressure ammonia synthesis [J]. CIESC Journal, 2025, 76(2): 825-834. |
[3] | Yanjiao XU, Linjin LOU, Zhuoqin FAN, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on modification technology of methylaluminoxane [J]. CIESC Journal, 2025, 76(2): 454-465. |
[4] | Zihang ZHAI, Jie JIANG, Jinjin LI, Ling ZHAO, Zhenhao XI. Synthesis and properties of ternary random copolyester PBSF based on 2,5-furandicarboxylic acid [J]. CIESC Journal, 2025, 76(2): 868-878. |
[5] | Xiaohang ZHONG, Wei XU, Wen ZHANG, Li XU, Yuxin WANG. A critical review on the effects of Fe impurity on H2 production via alkaline water electrolysis [J]. CIESC Journal, 2025, 76(2): 519-531. |
[6] | Falu DANG, Zhiguo SUN, Zhao GAO, Gang WANG, Zhengyu CHEN, Linzhou ZHANG, Jingcun LIAN, Meijia LIU, Zhongdong ZHANG, Chaowei LIU. One-step catalytic cracking of crude oil to light olefins: experimental and reaction pathway studies [J]. CIESC Journal, 2025, 76(2): 667-685. |
[7] | Ke ZHANG, Weijie REN, Mengna WANG, Kaifeng FAN, Liping CHANG, Jiabin LI, Tao MA, Jinping TIAN. Liquid-liquid mixing characteristics of Bunsen reaction products in microchannels [J]. CIESC Journal, 2025, 76(2): 623-636. |
[8] | Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation [J]. CIESC Journal, 2025, 76(1): 231-240. |
[9] | Na HUANG, Yunlong JIANG, Donghan WANG, Mingting WU, Xueli JIANG, Yu ZHONG. Numerical study of influence of channel vibration frequency on flow and heat transfer of supercritical n-decane with pyrolysis reaction [J]. CIESC Journal, 2025, 76(1): 173-183. |
[10] | Chuangde ZHANG, Li CHEN. Pore-scale study of effects of preferential path on multiphase reactive transport process in porous media [J]. CIESC Journal, 2025, 76(1): 161-172. |
[11] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[12] | Angran ZHAO, Yongqiang HAN, Zhipeng WANG, Pengfei LI, Yawei XU, Huiling TONG. Experimental study on simultaneous desulfurization and denitrification of red mud at low temperature [J]. CIESC Journal, 2024, 75(S1): 276-282. |
[13] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
[14] | Zichi YANG, Bingqi XIE, Ruixin SHI, Hong LEI, Chen CHEN, Caijin ZHOU, Jisong ZHANG. Research progress on efficient and safe gas-liquid mass transfer and reaction processes in tube-in-tube reactor [J]. CIESC Journal, 2024, 75(9): 3011-3027. |
[15] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 255
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||