CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5687-5696.DOI: 10.11949/0438-1157.20250304
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles
Xiaoyu TANG(
), Qiang XU(
), Haoyuan YU, Chenyu PEI, Liejin GUO(
)
Received:2025-03-25
Revised:2025-05-16
Online:2025-12-19
Published:2025-11-25
Contact:
Qiang XU, Liejin GUO
通讯作者:
徐强,郭烈锦
作者简介:唐晓宇(1997—),女,博士研究生,4120103131@stu.xjtu.edu.cn
基金资助:CLC Number:
Xiaoyu TANG, Qiang XU, Haoyuan YU, Chenyu PEI, Liejin GUO. Study on heat transfer and flow instability in open microchannels[J]. CIESC Journal, 2025, 76(11): 5687-5696.
唐晓宇, 徐强, 余昊远, 裴晨宇, 郭烈锦. 开放微通道中的换热及流动不稳定性研究[J]. 化工学报, 2025, 76(11): 5687-5696.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Schematic diagram of the test section: (a) test section explosion view; (b) internal structure of the heating copper block; (c) dimensions of flow section for open microchannels and smooth surfaces
| [1] | He Z Q, Yan Y F, Zhang Z E. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review[J]. Energy, 2021, 216: 119223. |
| [2] | 朱传辉, 李保国, 杨会芳. 微通道换热器研究及应用进展[J]. 热能动力工程, 2020, 35(9): 1-9. |
| Zhu C H, Li B G, Yang H F. Progress in research and application of microchannel heat exchangers[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(9): 1-9. | |
| [3] | Gao J, Hu Z H, Yang Q G, et al. Fluid flow and heat transfer in microchannel heat sinks: modelling review and recent progress[J]. Thermal Science and Engineering Progress, 2022, 29: 101203. |
| [4] | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
| [5] | 王瑜, 刘志成. 微通道内单相及气液两相流动换热数值模拟研究进展综述[J]. 压力容器, 2019, 36(12): 49-58, 64. |
| Wang Y, Liu Z C. Summary of research progress on numerical simulation of single-phase and liquid-gas two-phase flow heat transfer in microchannels[J]. Pressure Vessel Technology, 2019, 36(12): 49-58, 64. | |
| [6] | Lim K, Lee K, Ki H, et al. Enhancement of flow boiling heat transfer by laser-induced periodic surface structures using femtosecond laser[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123229. |
| [7] | Xia G D, Liu X F, Zhai Y L, et al. Single-phase and two-phase flows through helical rectangular channels in single screw expander prototype[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(1): 114-121. |
| [8] | Huh C, Kim J, Kim M H. Flow pattern transition instability during flow boiling in a single microchannel[J]. International Journal of Heat and Mass Transfer, 2007, 50(5/6): 1049-1060. |
| [9] | Xu L, Xu J L. Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5673-5686. |
| [10] | Han Q, Ma J X, Khan A S, et al. Bubble dynamics and their effects on interfacial heat transfer in one single microchannel[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125060. |
| [11] | 李俊业. 微纳形貌表面在不同结构微细通道内的流动沸腾强化换热研究[D]. 杭州: 浙江大学, 2020. |
| Li J Y. Enhanced flow boiling heat transfer of micro/nanoscale surfaces in different geometric microchannel[D].Hangzhou: Zhejiang University, 2020. | |
| [12] | Cheng X, Wu H Y. Improved flow boiling performance in high-aspect-ratio interconnected microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120627. |
| [13] | Chen L, Li X, Xiao R F, et al. Flow boiling of low-pressure water in microchannels of large aspect ratio[J]. Energies. 2020, 13(11):2689. |
| [14] | Lin Y H, Luo Y, Li J Y, et al. Heat transfer, pressure drop and flow patterns of flow boiling on heterogeneous wetting surface in a vertical narrow microchannel[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121158. |
| [15] | Singh S G, Kulkarni A, Duttagupta S P, et al. Impact of aspect ratio on flow boiling of water in rectangular microchannels[J]. Experimental Thermal and Fluid Science, 2008, 33(1): 153-160. |
| [16] | Markal B, Aydin O, Avci M. Effect of aspect ratio on saturated flow boiling in microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 93: 130-143. |
| [17] | Candan A, Markal B, Aydin O, et al. Saturated flow boiling characteristics in single rectangular minichannels: effect of aspect ratio[J]. Experimental Heat Transfer, 2018, 31(6): 531-551. |
| [18] | Harirchian T, Garimella S V. Microchannel size effects on local flow boiling heat transfer to a dielectric fluid[J]. International Journal of Heat and Mass Transfer, 2008, 51(15/16): 3724-3735. |
| [19] | Yin L F, Sun M M, Jiang P X, et al. Heat transfer coefficient and pressure drop of water flow boiling in porous open microchannels heat sink[J]. Applied Thermal Engineering, 2023, 218: 119361. |
| [20] | Yin L F, Jiang P X, Xu R N, et al. Heat transfer and pressure drop characteristics of water flow boiling in open microchannels[J]. International Journal of Heat and Mass Transfer, 2019, 137: 204-215 |
| [21] | Prajapati Y K. Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2019, 137: 1041-1052. |
| [22] | Bhandari P, Prajapati Y K. Thermal performance of open microchannel heat sink with variable pin fin height[J]. International Journal of Thermal Sciences, 2021, 159: 106609. |
| [23] | Xia G D, Cheng Y, Cheng L X, et al. Heat transfer characteristics and flow visualization during flow boiling of acetone in semi-open multi-microchannels[J]. Heat Transfer Engineering, 2019, 40(16): 1349-1362. |
| [24] | Balasubramanian K R, Krishnan R A, Suresh S. Spatial orientation effects on flow boiling performances in open microchannels heat sink configuration under a wide range of mass fluxes[J]. Experimental Thermal and Fluid Science, 2018, 99: 392-406. |
| [25] | Tang X Y, Xu Q, Li J F, et al. Experimental study on flow boiling heat transfer in open copper microchannel heat sinks with different aspect ratios[J]. International Journal of Heat and Mass Transfer, 2024, 231: 125879. |
| [26] | Cioncolini A, Santini L, Ricotti M E. Effects of dissolved air on subcooled and saturated flow boiling of water in a small diameter tube at low pressure[J]. Experimental Thermal and Fluid Science, 2007, 32(1): 38-51. |
| [27] | 李少丹, 谭思超, 许超, 等. 窄通道内不凝结气体对过冷沸腾汽泡行为的影响[J]. 原子能科学技术, 2013, 47(3): 359-363. |
| Li S D, Tan S C, Xu C, et al. Effect of dissolved gas on bubble behavior of subcooled boiling in narrow channel[J]. Atomic Energy Science and Technology, 2013, 47(3): 359-363. | |
| [28] | Deng D X, Wan W, Qin Y, et al. Flow boiling enhancement of structured microchannels with micro pin fins[J]. International Journal of Heat and Mass Transfer, 2017, 105: 338-349. |
| [29] | Fu K, Gao W H, Xu X H, et al. Flow boiling heat transfer and pressure drop characteristics of water in a copper foam fin microchannel heat sink[J]. Applied Thermal Engineering, 2023, 218: 119295. |
| [30] | Alam T, Lee P S, Yap C R, et al. Experimental investigation of local flow boiling heat transfer and pressure drop characteristics in microgap channel[J]. International Journal of Multiphase Flow, 2012, 42: 164-174. |
| [31] | Zhao Q, Zhang D, Qiu J C, et al. Bubble behaviors and flow boiling characteristics in open microchannels with large aspect ratio[J]. Applied Thermal Engineering, 2022, 213: 118768. |
| [32] | Rohini A K, Shin H C, Kim H G, et al. Pressure drop correlation for subcooled flow boiling in micro-channel heat sink[J]. International Journal of Mechanical Sciences, 2024, 272: 109167. |
| [33] | Ali R, Palm B, Maqbool M H. Experimental investigation of two-phase pressure drop in a microchannel[J]. Heat Transfer Engineering, 2011, 32(13/14): 1126-1138. |
| [1] | Yunlong SUN, Xiaoxiao XU, Yongfang HUANG, Jichao GUO, Weiwei CHEN. Diabatic visualization of CO2 flow boiling in a horizontal smooth tube [J]. CIESC Journal, 2025, 76(S1): 230-236. |
| [2] | Wenlong LI, Cheng CHANG, Xiaolin WU, Zhongli JI. Research on liquid distribution characteristics and pressure drop evolution in oil-water coalescing filters [J]. CIESC Journal, 2025, 76(9): 4850-4861. |
| [3] | Jiangyue GUO, Shoujin CHANG, Haitao HU. Numerical simulation for flow condensation of methanol in horizontal tube [J]. CIESC Journal, 2025, 76(6): 2580-2588. |
| [4] | Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube [J]. CIESC Journal, 2024, 75(S1): 95-107. |
| [5] | Nana SUN, Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN. Rheological property influencing factors and a pressure drop prediction model for pipeline transportation in thick oil O/W emulsions stabilized by modified magnetic nanoparticles [J]. CIESC Journal, 2024, 75(S1): 143-157. |
| [6] | Kehao DONG, Jingzhi ZHOU, Feng ZHOU, Haijia CHEN, Xiulan HUAI, Dong LI. Experiment of gas flow pressure drop under complex boundary conditions in ultra-thin space [J]. CIESC Journal, 2024, 75(7): 2505-2521. |
| [7] | Banghan WU, Dingbiao LIN, Haifeng LU, Xiaolei GUO, Haifeng LIU. Pipe pressure drop and transfer bottle conveying characteristics in vertical pipe pneumatic logistics transmission system [J]. CIESC Journal, 2024, 75(7): 2465-2473. |
| [8] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
| [9] | Jinzuo HUANG, Zhaohua LI, Xinwen CHEN, Yuqi QIAN, Meng ZHANG, Hang ZHOU, Xiucong ZHAO. Heat transfer capacity of spray cooling under vibration environment [J]. CIESC Journal, 2024, 75(12): 4523-4531. |
| [10] | Xinyu JI, Yuantong ZHANG, Xiaoping YANG, Jinjia WEI. Flow and boiling heat transfer in wedge-shaped manifold microchannel [J]. CIESC Journal, 2024, 75(11): 4196-4204. |
| [11] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
| [12] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
| [13] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
| [14] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
| [15] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||