CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 143-157.DOI: 10.11949/0438-1157.20240646
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Nana SUN(), Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN
Received:
2024-06-11
Revised:
2024-06-25
Online:
2024-12-17
Published:
2024-12-25
Contact:
Nana SUN
通讯作者:
孙娜娜
作者简介:
孙娜娜(1987—),女,博士,副教授,bingyuxuan6666@126.com
基金资助:
CLC Number:
Nana SUN, Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN. Rheological property influencing factors and a pressure drop prediction model for pipeline transportation in thick oil O/W emulsions stabilized by modified magnetic nanoparticles[J]. CIESC Journal, 2024, 75(S1): 143-157.
孙娜娜, 董红妹, 郭文豪, 柳健, 胡建波, 靳爽. 改性磁性纳米粒子稳定的稠油O/W型乳状液的流变性影响因素及管输压降预测模型[J]. 化工学报, 2024, 75(S1): 143-157.
温度/℃ | 稠油密度/(kg/m3) |
---|---|
20 | 954.71 |
30 | 953.59 |
40 | 953.38 |
50 | 952.37 |
60 | 950.17 |
70 | 947.85 |
Table 1 Density of thick oil at different temperatures
温度/℃ | 稠油密度/(kg/m3) |
---|---|
20 | 954.71 |
30 | 953.59 |
40 | 953.38 |
50 | 952.37 |
60 | 950.17 |
70 | 947.85 |
水平 | 改性磁性纳米粒子质量分数/% | pH | 含油率/% | NaCl浓度/(mol/L) | 搅拌速度/(r/min) | 乳化温度/℃ |
---|---|---|---|---|---|---|
1 | 0 | 5 | 50 | 0.02 | 200 | 14.3 |
2 | 0.06 | 7.5 | 65 | 0.08 | 900 | 22.5 |
3 | 0.12 | 10 | 80 | 0.14 | 1600 | 35 |
Table 2 Selected factors and levels
水平 | 改性磁性纳米粒子质量分数/% | pH | 含油率/% | NaCl浓度/(mol/L) | 搅拌速度/(r/min) | 乳化温度/℃ |
---|---|---|---|---|---|---|
1 | 0 | 5 | 50 | 0.02 | 200 | 14.3 |
2 | 0.06 | 7.5 | 65 | 0.08 | 900 | 22.5 |
3 | 0.12 | 10 | 80 | 0.14 | 1600 | 35 |
序号 | 改性磁性纳米粒子质量分数 | pH | 含油率 | NaCl 浓度 | 搅拌 速度 | 乳化 温度 |
---|---|---|---|---|---|---|
1 | 3 | 2 | 2 | 2 | 2 | 1 |
2 | 2 | 3 | 1 | 2 | 2 | 3 |
3 | 3 | 1 | 3 | 3 | 2 | 1 |
4 | 2 | 1 | 3 | 1 | 2 | 3 |
5 | 2 | 1 | 2 | 3 | 3 | 2 |
6 | 2 | 2 | 1 | 3 | 3 | 1 |
7 | 3 | 1 | 1 | 2 | 1 | 2 |
8 | 1 | 1 | 2 | 2 | 3 | 3 |
9 | 3 | 2 | 1 | 1 | 3 | 3 |
10 | 3 | 3 | 3 | 1 | 3 | 2 |
11 | 2 | 3 | 2 | 1 | 1 | 1 |
12 | 1 | 2 | 2 | 1 | 2 | 2 |
13 | 1 | 2 | 3 | 3 | 1 | 3 |
14 | 1 | 3 | 3 | 2 | 3 | 1 |
15 | 1 | 1 | 1 | 1 | 1 | 1 |
16 | 2 | 2 | 3 | 2 | 1 | 2 |
17 | 1 | 3 | 1 | 3 | 2 | 2 |
18 | 3 | 3 | 2 | 3 | 1 | 3 |
Table 3 6-factor 3-level orthogonal experiment
序号 | 改性磁性纳米粒子质量分数 | pH | 含油率 | NaCl 浓度 | 搅拌 速度 | 乳化 温度 |
---|---|---|---|---|---|---|
1 | 3 | 2 | 2 | 2 | 2 | 1 |
2 | 2 | 3 | 1 | 2 | 2 | 3 |
3 | 3 | 1 | 3 | 3 | 2 | 1 |
4 | 2 | 1 | 3 | 1 | 2 | 3 |
5 | 2 | 1 | 2 | 3 | 3 | 2 |
6 | 2 | 2 | 1 | 3 | 3 | 1 |
7 | 3 | 1 | 1 | 2 | 1 | 2 |
8 | 1 | 1 | 2 | 2 | 3 | 3 |
9 | 3 | 2 | 1 | 1 | 3 | 3 |
10 | 3 | 3 | 3 | 1 | 3 | 2 |
11 | 2 | 3 | 2 | 1 | 1 | 1 |
12 | 1 | 2 | 2 | 1 | 2 | 2 |
13 | 1 | 2 | 3 | 3 | 1 | 3 |
14 | 1 | 3 | 3 | 2 | 3 | 1 |
15 | 1 | 1 | 1 | 1 | 1 | 1 |
16 | 2 | 2 | 3 | 2 | 1 | 2 |
17 | 1 | 3 | 1 | 3 | 2 | 2 |
18 | 3 | 3 | 2 | 3 | 1 | 3 |
序号 | 剪切应力/Pa | |||||||
---|---|---|---|---|---|---|---|---|
10 s-1 | 50 s-1 | 90 s-1 | 130 s-1 | 170 s-1 | 210 s-1 | 250 s-1 | 290 s-1 | |
1 | 8.120 | 14.416 | 19.998 | 28.615 | 36.385 | 43.299 | 50.298 | 54.963 |
2 | 0.110 | 0.798 | 1.793 | 2.350 | 2.863 | 3.478 | 4.052 | 4.709 |
3 | 5.780 | 21.735 | 31.671 | 41.247 | 49.985 | 59.263 | 70.399 | 80.561 |
4 | 5.630 | 14.691 | 22.897 | 31.078 | 39.834 | 48.942 | 57.495 | 66.907 |
5 | 3.190 | 10.976 | 16.592 | 20.553 | 24.109 | 27.098 | 29.669 | 32.442 |
6 | 0.440 | 2.514 | 5.010 | 7.654 | 9.730 | 11.536 | 14.109 | 16.405 |
7 | 0.270 | 1.169 | 2.483 | 3.776 | 5.153 | 6.184 | 7.147 | 7.812 |
8 | 1.950 | 6.007 | 8.848 | 10.866 | 12.462 | 13.101 | 14.644 | 15.149 |
9 | 0.460 | 2.280 | 3.916 | 5.171 | 6.196 | 7.308 | 8.075 | 8.986 |
10 | 8.500 | 26.829 | 39.715 | 49.049 | 56.401 | 63.215 | 70.858 | 77.088 |
11 | 0.340 | 2.472 | 5.017 | 7.164 | 9.196 | 11.657 | 14.353 | 15.869 |
12 | 1.160 | 4.573 | 7.497 | 9.937 | 12.268 | 14.431 | 16.182 | 17.794 |
13 | 3.420 | 13.364 | 21.265 | 28.689 | 35.271 | 41.368 | 47.997 | 54.530 |
14 | 4.040 | 8.922 | 10.825 | 11.524 | 16.297 | 20.431 | 20.938 | 21.571 |
15 | 1.350 | 1.806 | 2.845 | 3.964 | 4.933 | 5.789 | 6.504 | 6.595 |
16 | 3.340 | 13.383 | 20.301 | 27.012 | 33.049 | 39.440 | 45.802 | 52.008 |
17 | 0.150 | 0.262 | 0.274 | 0.374 | 0.703 | 0.928 | 1.201 | 1.376 |
18 | 0.520 | 2.691 | 4.702 | 5.964 | 6.782 | 7.471 | 8.095 | 8.879 |
Table 4 Positive alternating current experimental results
序号 | 剪切应力/Pa | |||||||
---|---|---|---|---|---|---|---|---|
10 s-1 | 50 s-1 | 90 s-1 | 130 s-1 | 170 s-1 | 210 s-1 | 250 s-1 | 290 s-1 | |
1 | 8.120 | 14.416 | 19.998 | 28.615 | 36.385 | 43.299 | 50.298 | 54.963 |
2 | 0.110 | 0.798 | 1.793 | 2.350 | 2.863 | 3.478 | 4.052 | 4.709 |
3 | 5.780 | 21.735 | 31.671 | 41.247 | 49.985 | 59.263 | 70.399 | 80.561 |
4 | 5.630 | 14.691 | 22.897 | 31.078 | 39.834 | 48.942 | 57.495 | 66.907 |
5 | 3.190 | 10.976 | 16.592 | 20.553 | 24.109 | 27.098 | 29.669 | 32.442 |
6 | 0.440 | 2.514 | 5.010 | 7.654 | 9.730 | 11.536 | 14.109 | 16.405 |
7 | 0.270 | 1.169 | 2.483 | 3.776 | 5.153 | 6.184 | 7.147 | 7.812 |
8 | 1.950 | 6.007 | 8.848 | 10.866 | 12.462 | 13.101 | 14.644 | 15.149 |
9 | 0.460 | 2.280 | 3.916 | 5.171 | 6.196 | 7.308 | 8.075 | 8.986 |
10 | 8.500 | 26.829 | 39.715 | 49.049 | 56.401 | 63.215 | 70.858 | 77.088 |
11 | 0.340 | 2.472 | 5.017 | 7.164 | 9.196 | 11.657 | 14.353 | 15.869 |
12 | 1.160 | 4.573 | 7.497 | 9.937 | 12.268 | 14.431 | 16.182 | 17.794 |
13 | 3.420 | 13.364 | 21.265 | 28.689 | 35.271 | 41.368 | 47.997 | 54.530 |
14 | 4.040 | 8.922 | 10.825 | 11.524 | 16.297 | 20.431 | 20.938 | 21.571 |
15 | 1.350 | 1.806 | 2.845 | 3.964 | 4.933 | 5.789 | 6.504 | 6.595 |
16 | 3.340 | 13.383 | 20.301 | 27.012 | 33.049 | 39.440 | 45.802 | 52.008 |
17 | 0.150 | 0.262 | 0.274 | 0.374 | 0.703 | 0.928 | 1.201 | 1.376 |
18 | 0.520 | 2.691 | 4.702 | 5.964 | 6.782 | 7.471 | 8.095 | 8.879 |
序号 | K | n | R2 |
---|---|---|---|
1 | 0.447 | 0.852 | 0.994 |
2 | 0.026 | 0.918 | 0.988 |
3 | 0.891 | 0.790 | 0.996 |
4 | 0.390 | 0.905 | 0.997 |
5 | 1.075 | 0.603 | 0.997 |
6 | 0.054 | 1.006 | 0.997 |
7 | 0.032 | 0.977 | 0.992 |
8 | 0.844 | 0.515 | 0.983 |
9 | 0.137 | 0.740 | 0.994 |
10 | 2.687 | 0.593 | 0.998 |
11 | 0.047 | 1.032 | 0.998 |
12 | 0.267 | 0.744 | 0.998 |
13 | 0.585 | 0.799 | 0.999 |
14 | 0.813 | 0.588 | 0.937 |
15 | 0.157 | 0.662 | 0.957 |
16 | 0.564 | 0.796 | 0.999 |
17 | 0.002 | 1.159 | 0.951 |
18 | 0.268 | 0.622 | 0.981 |
Table 5 Consistency coefficients and power law indices under different experimental conditions
序号 | K | n | R2 |
---|---|---|---|
1 | 0.447 | 0.852 | 0.994 |
2 | 0.026 | 0.918 | 0.988 |
3 | 0.891 | 0.790 | 0.996 |
4 | 0.390 | 0.905 | 0.997 |
5 | 1.075 | 0.603 | 0.997 |
6 | 0.054 | 1.006 | 0.997 |
7 | 0.032 | 0.977 | 0.992 |
8 | 0.844 | 0.515 | 0.983 |
9 | 0.137 | 0.740 | 0.994 |
10 | 2.687 | 0.593 | 0.998 |
11 | 0.047 | 1.032 | 0.998 |
12 | 0.267 | 0.744 | 0.998 |
13 | 0.585 | 0.799 | 0.999 |
14 | 0.813 | 0.588 | 0.937 |
15 | 0.157 | 0.662 | 0.957 |
16 | 0.564 | 0.796 | 0.999 |
17 | 0.002 | 1.159 | 0.951 |
18 | 0.268 | 0.622 | 0.981 |
序号 | ΔP/(Pa/m) |
---|---|
1 | 3312.78 |
2 | 107.05 |
3 | 5246.84 |
4 | 3517.17 |
5 | 3154.39 |
6 | 141.88 |
7 | 118.69 |
8 | 1780.26 |
9 | 151.96 |
10 | 7594.92 |
11 | 138.14 |
12 | 1325.32 |
13 | 3561.91 |
14 | 2255.37 |
15 | 148.06 |
16 | 3396.03 |
17 | 66.93 |
18 | 169.53 |
Table 6 Tubular transport pressure drop per unit tube length for 18 groups of emulsions
序号 | ΔP/(Pa/m) |
---|---|
1 | 3312.78 |
2 | 107.05 |
3 | 5246.84 |
4 | 3517.17 |
5 | 3154.39 |
6 | 141.88 |
7 | 118.69 |
8 | 1780.26 |
9 | 151.96 |
10 | 7594.92 |
11 | 138.14 |
12 | 1325.32 |
13 | 3561.91 |
14 | 2255.37 |
15 | 148.06 |
16 | 3396.03 |
17 | 66.93 |
18 | 169.53 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
0.12 | 0 | 0 | 0 |
0.12 | 0 | 0.06 | 0.5 |
0.12 | 0 | 0.12 | 1 |
Table 7 Homogenization of mass fraction of modified magnetic nanoparticles
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
0.12 | 0 | 0 | 0 |
0.12 | 0 | 0.06 | 0.5 |
0.12 | 0 | 0.12 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
10 | 5 | 5 | 0 |
10 | 5 | 7.5 | 0.5 |
10 | 5 | 10 | 1 |
Table 8 pH homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
10 | 5 | 5 | 0 |
10 | 5 | 7.5 | 0.5 |
10 | 5 | 10 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
1600 | 200 | 200 | 0 |
1600 | 200 | 900 | 0.5 |
1600 | 200 | 1600 | 1 |
Table 9 Stirring speed homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
1600 | 200 | 200 | 0 |
1600 | 200 | 900 | 0.5 |
1600 | 200 | 1600 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
0.14 | 0.02 | 0.02 | 0 |
0.14 | 0.02 | 0.08 | 0.5 |
0.14 | 0.02 | 0.14 | 1 |
Table 10 NaCl concentration homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
0.14 | 0.02 | 0.02 | 0 |
0.14 | 0.02 | 0.08 | 0.5 |
0.14 | 0.02 | 0.14 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
80 | 50 | 50 | 0 |
80 | 50 | 65 | 0.5 |
80 | 50 | 80 | 1 |
Table 11 Oil-water ratio homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
80 | 50 | 50 | 0 |
80 | 50 | 65 | 0.5 |
80 | 50 | 80 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
35 | 14.3 | 14.3 | 0 |
35 | 14.3 | 22.5 | 0.396 |
35 | 14.3 | 35 | 1 |
Table 12 Emulsification temperature homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
35 | 14.3 | 14.3 | 0 |
35 | 14.3 | 22.5 | 0.396 |
35 | 14.3 | 35 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
7594.924 | 66.932 | 66.932 | 0 |
7594.924 | 66.932 | 107.048 | 0.005 |
7594.924 | 66.932 | 118.687 | 0.007 |
7594.924 | 66.932 | 138.135 | 0.009 |
7594.924 | 66.932 | 141.878 | 0.010 |
7594.924 | 66.932 | 148.055 | 0.011 |
7594.924 | 66.932 | 151.962 | 0.011 |
7594.924 | 66.932 | 169.532 | 0.014 |
7594.924 | 66.932 | 1325.317 | 0.167 |
7594.924 | 66.932 | 1780.264 | 0.228 |
7594.924 | 66.932 | 2255.368 | 0.291 |
7594.924 | 66.932 | 3154.388 | 0.410 |
7594.924 | 66.932 | 3312.779 | 0.431 |
7594.924 | 66.932 | 3396.028 | 0.442 |
7594.924 | 66.932 | 3517.170 | 0.458 |
7594.924 | 66.932 | 3561.914 | 0.464 |
7594.924 | 66.932 | 5246.842 | 0.688 |
7594.924 | 66.932 | 7594.924 | 1 |
Table 13 Voltage drop homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
7594.924 | 66.932 | 66.932 | 0 |
7594.924 | 66.932 | 107.048 | 0.005 |
7594.924 | 66.932 | 118.687 | 0.007 |
7594.924 | 66.932 | 138.135 | 0.009 |
7594.924 | 66.932 | 141.878 | 0.010 |
7594.924 | 66.932 | 148.055 | 0.011 |
7594.924 | 66.932 | 151.962 | 0.011 |
7594.924 | 66.932 | 169.532 | 0.014 |
7594.924 | 66.932 | 1325.317 | 0.167 |
7594.924 | 66.932 | 1780.264 | 0.228 |
7594.924 | 66.932 | 2255.368 | 0.291 |
7594.924 | 66.932 | 3154.388 | 0.410 |
7594.924 | 66.932 | 3312.779 | 0.431 |
7594.924 | 66.932 | 3396.028 | 0.442 |
7594.924 | 66.932 | 3517.170 | 0.458 |
7594.924 | 66.932 | 3561.914 | 0.464 |
7594.924 | 66.932 | 5246.842 | 0.688 |
7594.924 | 66.932 | 7594.924 | 1 |
因素 | 改性磁性纳米 粒子质量分数/% | pH | 油水比 | NaCl 浓度/(mol/L) | 搅拌 速度/ (r/min) | 乳化 温度/℃ |
---|---|---|---|---|---|---|
F值 | 0.529 | 0.105 | 14.327 | 0.03 | 0.533 | 0.347 |
sig.值 | 0.6 | 0.901 | <0.01 | 0.97 | 0.597 | 0.712 |
Table 14 ANOVA results
因素 | 改性磁性纳米 粒子质量分数/% | pH | 油水比 | NaCl 浓度/(mol/L) | 搅拌 速度/ (r/min) | 乳化 温度/℃ |
---|---|---|---|---|---|---|
F值 | 0.529 | 0.105 | 14.327 | 0.03 | 0.533 | 0.347 |
sig.值 | 0.6 | 0.901 | <0.01 | 0.97 | 0.597 | 0.712 |
模型 | R | R2 | 调整后R2 | 标准估算的错误 |
---|---|---|---|---|
7 | 0.980 | 0.960 | 0.943 | 0.068916 |
Table 15 Summary of models
模型 | R | R2 | 调整后R2 | 标准估算的错误 |
---|---|---|---|---|
7 | 0.980 | 0.960 | 0.943 | 0.068916 |
模型 | 平方和 | 自由度 | 均方 | F | 显著性 | |
---|---|---|---|---|---|---|
7 | 回归 | 1.357 | 5 | 0.271 | 57.144 | 0.000 |
残差 | 0.057 | 12 | 0.005 | — | — | |
总计 | 1.414 | 17 | — | — | — |
Table 16 F-test results
模型 | 平方和 | 自由度 | 均方 | F | 显著性 | |
---|---|---|---|---|---|---|
7 | 回归 | 1.357 | 5 | 0.271 | 57.144 | 0.000 |
残差 | 0.057 | 12 | 0.005 | — | — | |
总计 | 1.414 | 17 | — | — | — |
模型 | 未标准化系数 | 标准化系数 Beta | t | 显著性 | ||
---|---|---|---|---|---|---|
B | 标准错误 | |||||
7 | 常量 | 0.041 | 0.024 | 1.684 | 0.118 | |
(ah)2 | 0.741 | 0.076 | 0.816 | 9.729 | 0 | |
(eh)3 | -0.436 | 0.077 | -0.479 | -5.639 | 0 | |
ae | 0.298 | 0.063 | 0.355 | 4.698 | 0.001 | |
ac | 0.146 | 0.054 | 0.17 | 2.68 | 0.02 | |
ad | 0.165 | 0.062 | 0.196 | 2.659 | 0.021 |
Table 17 t-test and model covariance diagnosis
模型 | 未标准化系数 | 标准化系数 Beta | t | 显著性 | ||
---|---|---|---|---|---|---|
B | 标准错误 | |||||
7 | 常量 | 0.041 | 0.024 | 1.684 | 0.118 | |
(ah)2 | 0.741 | 0.076 | 0.816 | 9.729 | 0 | |
(eh)3 | -0.436 | 0.077 | -0.479 | -5.639 | 0 | |
ae | 0.298 | 0.063 | 0.355 | 4.698 | 0.001 | |
ac | 0.146 | 0.054 | 0.17 | 2.68 | 0.02 | |
ad | 0.165 | 0.062 | 0.196 | 2.659 | 0.021 |
油水比 | 理论压降/Pa | 实验压降/Pa | 误差绝对值/% |
---|---|---|---|
75∶25 | 4961.435 | 5031.388 | 1.39% |
70∶30 | 3501.285 | 3653.878 | 4.18% |
65∶35 | 2256.346 | 2298.687 | 1.84% |
60∶40 | 1226.616 | 1310.264 | 6.38% |
55∶45 | 412.097 | 436.962 | 5.69% |
Table 18 Theoretical pressure drop vs experimental pressure drop
油水比 | 理论压降/Pa | 实验压降/Pa | 误差绝对值/% |
---|---|---|---|
75∶25 | 4961.435 | 5031.388 | 1.39% |
70∶30 | 3501.285 | 3653.878 | 4.18% |
65∶35 | 2256.346 | 2298.687 | 1.84% |
60∶40 | 1226.616 | 1310.264 | 6.38% |
55∶45 | 412.097 | 436.962 | 5.69% |
改性磁性纳米粒子质量分数/% | 含油率/% | NaCl浓度/ (mol/L) | 搅拌速度/ (r/min) | 乳化温度/℃ | 理论压降/Pa | 实验压降/Pa | 误差绝对值/% |
---|---|---|---|---|---|---|---|
0.07 | 50 | 0.12 | 660 | 17 | 67.437 | 68.228 | 1.16 |
Table 19 Experimental verification of the optimal solution
改性磁性纳米粒子质量分数/% | 含油率/% | NaCl浓度/ (mol/L) | 搅拌速度/ (r/min) | 乳化温度/℃ | 理论压降/Pa | 实验压降/Pa | 误差绝对值/% |
---|---|---|---|---|---|---|---|
0.07 | 50 | 0.12 | 660 | 17 | 67.437 | 68.228 | 1.16 |
1 | Martínez-Palou R, de Lourdes Mosqueira M, Zapata-Rendón B, et al. Transportation of heavy and extra-heavy crude oil by pipeline: a review[J]. Journal of Petroleum Science and Engineering, 2011, 75(3/4): 274-282. |
2 | Fakher S, Ahdaya M, Elturki M, et al. Critical review of asphaltene properties and factors impacting its stability in crude oil[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(3): 1183-1200. |
3 | Zhang F, Zhang Q, Zhou Z H, et al. Study on the effect of different viscosity reducers on viscosity reduction and emulsification with Daqing crude oil[J]. Molecules, 2023, 28(3): 1399. |
4 | 韩晋晋, 刘渊. 浅谈水包油乳化降黏技术在我国稠油管输中的应用前景[J]. 石化技术, 2016, 23(6): 35-36. |
Han J J, Liu Y. Application prospect of oil-in-water emulsifying and viscosity reducing technology in heavy oil transportation in China[J]. Petrochemical Industry Technology, 2016, 23(6): 35-36. | |
5 | 檀家桐, 扈海莉, 李爱军. 稠油管道输送技术综述[J]. 内蒙古石油化工, 2019, 45 (8): 66-68. |
Tan J T, Hu H L, Li A J. Heavy oil transportation technology: a review[J]. Inner Mongolia Petrochemical Industry, 2019, 45(8): 66-68. | |
6 | Frelichowska J, Bolzinger M A, Pelletier J, et al. Topical delivery of lipophilic drugs from O/W Pickering emulsions[J]. International Journal of Pharmaceutics, 2009, 371(1/2): 56-63. |
7 | Low L E, Tan L T H, Goh B H, et al. Magnetic cellulose nanocrystal stabilized Pickering emulsions for enhanced bioactive release and human colon cancer therapy[J]. International Journal of Biological Macromolecules, 2019, 127: 76-84. |
8 | Purcar V, Cinteza O, Donescu D, et al. Surface modification of silica particles assisted by CO2 [J]. The Journal of Supercritical Fluids, 2014, 87: 34-39. |
9 | Liu J, Bin Y Z, Masaru M. Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size[J]. The Journal of Physical Chemistry C, 2012, 116 (1): 134-143. |
10 | Purcar V, Caprarescu S, Donescu D, et al. Degradation of TiO2 and/or SiO2 hybrid films doped with different cationic dyes[J]. Thin Solid Films, 2013, 534: 301-307. |
11 | Zhao F P, Repo E, Yin D L, et al. One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants[J]. Scientific Reports, 2017, 7(1): 15811. |
12 | Tang J T, Song Y, Zhao F P, et al. Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal[J]. Carbohydrate Polymers, 2019, 208: 404-412. |
13 | Peng B L, Tang J T, Luo J H, et al. Applications of nanotechnology in oil and gas industry: progress and perspective[J]. The Canadian Journal of Chemical Engineering, 2018, 96(1): 91-100. |
14 | Lv T, Zhang S, Qi D M, et al. Enhanced demulsification from aqueous media by using magnetic chitosan-based flocculant[J]. Journal of Colloid and Interface Science, 2018, 518: 76-83. |
15 | Fang S W, Chen B, Zhang H, et al. The effects of ultrasonic time, temperature, size and polyether type on performances of magnetic flocculants for oily wastewater produced from polymer flooding treatment[J]. Separation Science and Technology, 2016, 51: 2991-2999. |
16 | Huang X F, Xiong Y J, Lu L J, et al. Manipulation of surface hydrophobicity and charge of demulsifying bacteria using functional magnetic nanoparticles: a mechanistic study of demulsification performance[J]. Energy & Fuels, 2017, 31(3): 3295-3304. |
17 | Low L E, Tey B T, Ong B H, et al. Palm olein-in-water Pickering emulsion stabilized by Fe3O4-cellulose nanocrystal nanocomposites and their responses to pH[J]. Carbohydrate Polymers, 2017, 155: 391-399. |
18 | Jia K L, Guo Y S, Yu Y, et al. pH-responsive Pickering emulsions stabilized solely by surface-inactive nanoparticles via an unconventional stabilization mechanism[J]. Soft Matter, 2021, 17(12): 3346-3357. |
19 | Mendiratta S, Ali A A A, Hejazi S H, et al. Dual stimuli-responsive Pickering emulsions from novel magnetic hydroxyapatite nanoparticles and their characterization using a microfluidic platform[J]. Langmuir, 2021, 37(4): 1353-1364. |
20 | Gálvez-Vergara A, Fresco-Cala B, Cárdenas S. Switchable Pickering emulsions stabilized by polystyrene-modified magnetic nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606: 125462. |
21 | Lan Q, Liu C, Yang F, et al. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J]. Journal of Colloid and Interface Science, 2007, 310(1): 260-269. |
22 | Fu E Y, Chen K M, Wang Q L, et al. Formation and stabilization of Pickering emulsions using salt-sensitive core-shell cationic nanoparticles[J]. Journal of Materials Science, 2021, 56(25): 14019-14034. |
23 | Xu J J, Xu W, Sun D Y, et al. The stepwise organization of nanoparticles into a Pickering emulsion[J]. Soft Matter, 2021, 17(7): 1796-1801. |
24 | Fu C, Liu N. Rheology and stability of nanoparticle-stabilized CO2 foam under reservoir conditions[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107671. |
25 | Maurya N K, Mandal A. Investigation of synergistic effect of nanoparticle and surfactant in macro emulsion based EOR application in oil reservoirs[J]. Chemical Engineering Research and Design, 2018, 132: 370-384. |
26 | Heard J, Harvey E, Johnson B B, et al. The effect of filamentous bacteria on foam production and stability[J]. Colloids and Surfaces B: Biointerfaces, 2008, 63(1): 21-26. |
27 | Ashrafizadeh S N, Motaee E, Hoshyargar V. Emulsification of heavy crude oil in water by natural surfactants[J]. Journal of Petroleum Science and Engineering, 2012, 86: 137-143. |
28 | 李明远, 吴肇亮. 石油乳状液[M]. 北京: 科学出版社, 2009. |
Li M Y, Wu Z L. Petroleum Emulsion[M]. Beijing: Science Press, 2009. | |
29 | 刘浩民, 邹林, 耿雷, 等. 石油磺酸盐-乙二胺复合驱油体系研究[J]. 精细石油化工进展, 2016, 17(3): 35-38. |
Liu H M, Zou L, Geng L, et al. Study on a combined petroleum sulfonate-ethanediamine flooding system[J]. Advances in Fine Petrochemicals, 2016, 17(3): 35-38. | |
30 | 刘岩, 王新龙. CO3O4纳米颗粒稳定的Pickering乳液的稳定性研究[C]//2013中国化工学会年会论文集. 南京, 2013: 222. |
Liu Y, Wang X L. Stability study of Pickering emulsion stabilized by CO3O4 nanoparticles[C]//Proceedings of the 2013 Annual Meeting of the Chinese Chemical Society. Nanjing, 2013: 222. | |
31 | 孙娜娜. 塔河稠油乳化降黏及微波化学破乳研究[D]. 成都: 西南石油大学, 2016. |
Sun N N. Research on the emulsification of Tahe heavy crude oil and its' demulsification by microwave chemical method[D]. Chengdu: Southwest Petroleum University, 2016. | |
32 | Giovanna B, Karim G, Craig W C. Mesoscale model for ostwald ripening of catalyst nanoparticles[J]. Journal of The Electrochemical Society, 2021, 168 (5): 054515 |
33 | 陈小榆. 工程流体力学[M]. 北京: 石油工业出版社, 2015. |
Chen X Y. Engineering Fluid Mechanics[M]. Beijing: Petroleum Industry Press, 2015. | |
34 | 蒋华义. 输油管道设计与管理[M]. 北京: 石油工业出版社, 2010. |
Jiang H Y. Design and Management of Oil Pipeline[M]. Beijing: Petroleum Industry Press, 2010. |
[1] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[2] | Huihui XIE, Jiaxin JIANG, Xin WANG, Zheng LI, Xin GUO, Xinran LYU, Lingyun WANG, Yang LIU. Study on transport separation of platinum and palladium by deep eutectic solvent polymer inclusion membrane [J]. CIESC Journal, 2024, 75(S1): 235-243. |
[3] | Su TANG, Zi'ao ZHENG, Hanze WEI, Xiaoling XU, Xiaoqiang ZHAI. Preparation and thermal conductivity reinforcement of PMMA/PEG600/CNT composite shaped phase change materials [J]. CIESC Journal, 2024, 75(S1): 309-320. |
[4] | Xiaoyu JIANG, Huanting LUO, Rui HONG, Wenjing DU. Specific heat of diol coolant determined by modulated differential scanning calorimetry [J]. CIESC Journal, 2024, 75(S1): 40-46. |
[5] | Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube [J]. CIESC Journal, 2024, 75(S1): 95-107. |
[6] | Xin GUO, Wenjing LI, Junfei QIAO. Prediction of effluent parameters in wastewater treatment process using self-organizing modular neural network [J]. CIESC Journal, 2024, 75(9): 3242-3254. |
[7] | Ji LI, Jianlin WANG, Rui HE, Xinjie ZHOU, Wen WANG, Liqiang ZHAO. DBSVDD-RVR based online soft sensing for quality variables in multimode batch processes [J]. CIESC Journal, 2024, 75(9): 3231-3241. |
[8] | Wuling ZHAO, Yi MAN. Research on framework of nanocellulose molecular structure prediction model based on variational encoder [J]. CIESC Journal, 2024, 75(9): 3221-3230. |
[9] | Liping ZHANG, Xiaorong MENG, Jinfeng SONG, Jinjing DU. Preparation of VO2@KH550/570@PS composite film and its thermally induced phase change properties [J]. CIESC Journal, 2024, 75(9): 3348-3359. |
[10] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[11] | Haiyan DU, Kai ZHU, Feng YOU, Jinfeng WANG, Yifan ZHAO, Nan ZHANG, Ying LI. Self-healing anti-freezing ionic hydrogel for strain sensors [J]. CIESC Journal, 2024, 75(7): 2709-2722. |
[12] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[13] | Hongtao LI, Zhenlei WANG, Xin WANG. Improved conditional Gaussian regression soft sensor based on just-in-time learning [J]. CIESC Journal, 2024, 75(6): 2299-2312. |
[14] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[15] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 93
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||