CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3235-3245.DOI: 10.11949/0438-1157.20250426
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Peiqiang CHEN1,2(
), Qun ZHENG1, Yuting JIANG1, Chunhua XIONG2, Jinmao CHEN2, Xudong WANG2, Long HUANG2, Man RUAN2(
), Wanli XU2(
)
Received:2025-04-22
Revised:2025-07-01
Online:2025-08-13
Published:2025-07-25
Contact:
Man RUAN, Wanli XU
陈培强1,2(
), 郑群1, 姜玉廷1, 熊春华2, 陈今茂2, 王旭东2, 黄龙2, 阮曼2(
), 徐万里2(
)
通讯作者:
阮曼,徐万里
作者简介:陈培强(1994—),男,博士研究生,chenpeiqiang@hrbeu.edu.cn
基金资助:CLC Number:
Peiqiang CHEN, Qun ZHENG, Yuting JIANG, Chunhua XIONG, Jinmao CHEN, Xudong WANG, Long HUANG, Man RUAN, Wanli XU. Effects of electrolyte flow rate and current density on the output performance of seawater-activated batteries[J]. CIESC Journal, 2025, 76(7): 3235-3245.
陈培强, 郑群, 姜玉廷, 熊春华, 陈今茂, 王旭东, 黄龙, 阮曼, 徐万里. 电液流量及电流密度对海水激活电池输出特性的影响[J]. 化工学报, 2025, 76(7): 3235-3245.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值/mm |
|---|---|
| 阳极长度 | 100 |
| 阳极宽度 | 100 |
| 阳极厚度 | 0.25 |
| 阴极长度 | 100 |
| 阴极宽度 | 100 |
| 阴极厚度 | 1 |
| 阴阳极间隔 | 0.5 |
| 进口直径 | 12 |
| 出口直径 | 12 |
| 进出口处直流道宽度 | 3 |
| 进出口处弧形流道宽度 | 4 |
Table 1 Geometric parameters of the model
| 参数 | 数值/mm |
|---|---|
| 阳极长度 | 100 |
| 阳极宽度 | 100 |
| 阳极厚度 | 0.25 |
| 阴极长度 | 100 |
| 阴极宽度 | 100 |
| 阴极厚度 | 1 |
| 阴阳极间隔 | 0.5 |
| 进口直径 | 12 |
| 出口直径 | 12 |
| 进出口处直流道宽度 | 3 |
| 进出口处弧形流道宽度 | 4 |
| 参数 | 数值 |
|---|---|
| 开路电压/V | 2.06 |
| OH-浓度/(mol/L) | 4 |
| 阴极孔隙率 | 0.56 |
| 电解液密度/(kg/m3) | 1250 |
| 电解液比热容/(J/kg·K) | 4182 |
| 电解液动力黏性系数/(kg/(m·s)) | 0.0025 |
| 压力/Pa | 101325 |
| 运行温度/℃ | 80 |
Table 2 Electrochemical and kinetic parameters
| 参数 | 数值 |
|---|---|
| 开路电压/V | 2.06 |
| OH-浓度/(mol/L) | 4 |
| 阴极孔隙率 | 0.56 |
| 电解液密度/(kg/m3) | 1250 |
| 电解液比热容/(J/kg·K) | 4182 |
| 电解液动力黏性系数/(kg/(m·s)) | 0.0025 |
| 压力/Pa | 101325 |
| 运行温度/℃ | 80 |
| 评价指标 | 权重系数 | 方案 | 综合评价值 |
|---|---|---|---|
| 功率密度 | 0.3767 | 250~100 | 0.659 |
| 能量密度 | 0.2225 | 250~200 | 0.680 |
| 电解液利用率 | 0.2004 | 250~300 | 0.731 |
| 有效放电容量 | 0.2004 | 250~400 | 0.751 |
| — | — | 250~500 | 0.785 |
| — | — | 250~600 | 0.808 |
| — | — | 250~700 | 0.770 |
| — | — | 250~800 | 0.807 |
| — | — | 250~900 | 0.702 |
| — | — | 250~1000 | 0.409 |
Table 3 Comprehensive evaluation results
| 评价指标 | 权重系数 | 方案 | 综合评价值 |
|---|---|---|---|
| 功率密度 | 0.3767 | 250~100 | 0.659 |
| 能量密度 | 0.2225 | 250~200 | 0.680 |
| 电解液利用率 | 0.2004 | 250~300 | 0.731 |
| 有效放电容量 | 0.2004 | 250~400 | 0.751 |
| — | — | 250~500 | 0.785 |
| — | — | 250~600 | 0.808 |
| — | — | 250~700 | 0.770 |
| — | — | 250~800 | 0.807 |
| — | — | 250~900 | 0.702 |
| — | — | 250~1000 | 0.409 |
| [1] | Arnold S, Wang L, Presser V. Dual-use of seawater batteries for energy storage and water desalination[J]. Small, 2022, 18(43): 2107913. |
| [2] | Chen J L, Sun L, Wang K, et al. Research and applications of rechargeable seawater battery[J]. Journal of Energy Storage, 2024, 76: 109659. |
| [3] | Zhang D H, Liu X, Li H H, et al. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries[J]. Angewandte Chemie International Edition, 2021, 60(2): 598-616. |
| [4] | Zhou L M, Liu L J, Hao Z M, et al. Opportunities and challenges for aqueous metal-proton batteries[J]. Matter, 2021, 4(4): 1252-1273. |
| [5] | Tian H J, Li Z, Feng G X, et al. Stable, high-performance, dendrite-free, seawater-based aqueous batteries[J]. Nature Communications, 2021, 12(1): 237. |
| [6] | Khezri R, Motlagh S R, Etesami M, et al. Balancing current density and electrolyte flow for improved zinc-air battery cyclability[J]. Applied Energy, 2024, 376: 124239. |
| [7] | Trudgeon D P, Loh A, Ullah H, et al. The influence of zinc electrode substrate, electrolyte flow rate and current density on zinc-nickel flow cell performance[J]. Electrochimica Acta, 2021, 373: 137890. |
| [8] | Naybour R D. The effect of electrolyte flow on the morphology of zinc electrodeposited from aqueous alkaline solution containing zincate ions[J]. Journal of the Electrochemical Society, 1969, 116(4): 520. |
| [9] | Despic A R, Diggle J, Bockris J O. Mechanism of the formation of zinc dendrites[J]. Journal of the Electrochemical Society, 1968, 115(5): 507. |
| [10] | Diggle J W, Despic A R, O'M Bockris J. The mechanism of the dendritic electrocrystallization of zinc[J]. Journal of the Electrochemical Society, 1969, 116(11): 1503. |
| [11] | Khazaeli A, Vatani A, Tahouni N, et al. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries[J]. Journal of Power Sources, 2015, 293: 599-612. |
| [12] | Abdelghani-Idrissi S, Dubouis N, Grimaud A, et al. Effect of electrolyte flow on a gas evolution electrode[J]. Scientific Reports, 2021, 11: 4677. |
| [13] | Maruthi Prasanna M, Jayanti S. Effect of electrolyte circulation rate in flow-through mode on the performance of vanadium redox flow battery[J]. Journal of Power Sources, 2023, 582: 233536. |
| [14] | Ito Y, Nyce M, Plivelich R, et al. Zinc morphology in zinc-nickel flow assisted batteries and impact on performance[J]. Journal of Power Sources, 2011, 196(4): 2340-2345. |
| [15] | Wang T, Fu J H, Zheng M L, et al. Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries[J]. Applied Energy, 2018, 227: 613-623. |
| [16] | Wang R Y, Kirk D W, Zhang G X. Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions[J]. Journal of the Electrochemical Society, 2006, 153(5): C357. |
| [17] | Sharifi B, Mojtahedi M, Goodarzi M, et al. Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder[J]. Hydrometallurgy, 2009, 99(1/2): 72-76. |
| [18] | Dam A P, Franz T, Papakonstantinou G, et al. Catalyst dissolution in PEM water electrolysis: influence of time, current density and iridium ion transport in single-pass and recirculation water flow modes[J]. Applied Catalysis B: Environment and Energy, 2025, 365: 124946. |
| [19] | Zarei-Jelyani M, Loghavi M M, Babaiee M, et al. The significance of charge and discharge current densities in the performance of vanadium redox flow battery[J]. Electrochimica Acta, 2023, 443: 141922. |
| [20] | Pismenskaya N, Gorobchenko A, Solonchenko K, et al. Effect of current density on anion-exchange membrane scaling during electrodialysis of phosphate-containing solution: experimental study and predictive simulation[J]. Desalination, 2025, 600: 118487. |
| [21] | Qiu C S, He G, Shi W K, et al. The polarization characteristics of lithium-ion batteries under cyclic charge and discharge[J]. Journal of Solid State Electrochemistry, 2019, 23(6): 1887-1902. |
| [22] | Dong N, Zhang F L, Pan H L. Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries[J]. Chemical Science, 2022, 13(28): 8243-8252. |
| [23] | Chen P Q, Zheng Q. Investigation on flow field optimization of seawater activated battery based on flow channel structure design[J]. Journal of Energy Storage, 2024, 84: 110798. |
| [24] | Sun J, Jiang H R, Zhang B W, et al. Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries[J]. Applied Energy, 2020, 259: 114198. |
| [25] | Zhu S, Pelton R H, Collver K. Mechanistic modelling of fluid permeation through compressible fiber beds[J]. Chemical Engineering Science, 1995, 50(22): 3557-3572. |
| [26] | Newman J, Balsara N P. Electrochemical Systems[M]. Hoboken: John Wiley & Sons, Inc., 2021. |
| [27] | Tjaden B, Cooper S J, Brett D J, et al. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems[J]. Current Opinion in Chemical Engineering, 2016, 12: 44-51. |
| [28] | Torabi F, Aliakbar A. A single-domain formulation for modeling and simulation of zinc-silver oxide batteries[J]. Journal of the Electrochemical Society, 2012, 159(12): A1986-A1992. |
| [29] | He X H, Li Z, Wang Y K, et al. A high-purity AgO cathode active material for high-performance aqueous AgO-Al batteries[J]. Journal of Power Sources, 2022, 551: 232151. |
| [30] | Chen P Q, Xiong C H, Zheng Q, et al. Numerical simulation and experimental investigation on the optimization of flow-guided structures for high-performance aqueous AgO-Al batteries[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126167. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [4] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [5] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [6] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [7] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [8] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [9] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [10] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [11] | Xianchao REN, Yaxiu GU, Shaobin DUAN, Wenzhu JIA, Hanlin LI. Experimental study on heat and mass transfer performance of elliptical tube-fin evaporative condenser [J]. CIESC Journal, 2025, 76(S1): 75-83. |
| [12] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [13] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [14] | Haoran SUN, Chengyun WU, Yanmeng WANG, Jingnan SUN, Renyu HU, Zhongdi DUAN. Modeling and experimental study on the evaporation characteristics of liquid droplets subject to thermal convection [J]. CIESC Journal, 2025, 76(S1): 123-132. |
| [15] | Wei SU, Dahai ZHAO, Xu JIN, Zhongyan LIU, Jing LI, Xiaosong ZHANG. Delaying condensation frosting using biphilic surfaces coupled with spatial control of liquid desiccant [J]. CIESC Journal, 2025, 76(S1): 140-151. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||