CIESC Journal ›› 2025, Vol. 76 ›› Issue (S1): 246-257.DOI: 10.11949/0438-1157.20250079
• Fluid dynamics and transport phenomena • Previous Articles
Jiuchun SUN1,2(
), Yunlong SANG1,2, Haitao WANG1,2(
), Hao JIA3(
), Yan ZHU4
Received:2025-01-19
Revised:2025-03-09
Online:2025-06-26
Published:2025-06-25
Contact:
Haitao WANG, Hao JIA
孙九春1,2(
), 桑运龙1,2, 王海涛1,2(
), 贾浩3(
), 朱艳4
通讯作者:
王海涛,贾浩
作者简介:孙九春(1976—),男,博士,教授级高级工程师,sjczy999@163.com
基金资助:CLC Number:
Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines[J]. CIESC Journal, 2025, 76(S1): 246-257.
孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257.
Add to citation manager EndNote|Ris|BibTeX
| 管路名称 | 入口管径/m | 出口管径/m |
|---|---|---|
| 中心冲刷 | 0.3 | 0.2×1 0.08×4 |
| 上部冲刷左 | 0.2 | 0.2 |
| 上部冲刷右 | 0.2 | 0.2 |
| 泥浆门前冲刷左 | 0.2 | 0.15 |
| 泥浆门前冲刷右 | 0.2 | 0.15 |
| 破碎机冲刷左 | 0.2 | 0.15 |
| 破碎机冲刷右 | 0.2 | 0.15 |
| 泥浆门后冲刷左1(BJ1) | 0.1 | 0.1 |
| 泥浆门后冲刷左2(BJ2) | 0.1 | 0.1 |
| 泥浆门后冲刷右1(BJ3) | 0.1 | 0.1 |
| 泥浆门后冲刷右2(BJ4) | 0.1 | 0.1 |
| 格栅冲刷左(GJ1) | 0.1 | 0.08 |
| 格栅冲刷右(GJ2) | 0.1 | 0.08 |
| 排浆管 | 0.5 | 0.5 |
Table 1 Diameter of each flushing pipeline for slurry inlet
| 管路名称 | 入口管径/m | 出口管径/m |
|---|---|---|
| 中心冲刷 | 0.3 | 0.2×1 0.08×4 |
| 上部冲刷左 | 0.2 | 0.2 |
| 上部冲刷右 | 0.2 | 0.2 |
| 泥浆门前冲刷左 | 0.2 | 0.15 |
| 泥浆门前冲刷右 | 0.2 | 0.15 |
| 破碎机冲刷左 | 0.2 | 0.15 |
| 破碎机冲刷右 | 0.2 | 0.15 |
| 泥浆门后冲刷左1(BJ1) | 0.1 | 0.1 |
| 泥浆门后冲刷左2(BJ2) | 0.1 | 0.1 |
| 泥浆门后冲刷右1(BJ3) | 0.1 | 0.1 |
| 泥浆门后冲刷右2(BJ4) | 0.1 | 0.1 |
| 格栅冲刷左(GJ1) | 0.1 | 0.08 |
| 格栅冲刷右(GJ2) | 0.1 | 0.08 |
| 排浆管 | 0.5 | 0.5 |
| 强风化泥质粉砂岩颗粒直径/mm | 颗粒占比/% | 含黏性土碎石 颗粒直径/mm | 颗粒占比/% |
|---|---|---|---|
| >60 | 8 | >60 | 11 |
| 60~50 | 12 | 60~50 | 8 |
| 50~40 | 12 | 50~40 | 8 |
| 40~30 | 13 | 40~30 | 10 |
| 30~20 | 13 | 30~20 | 10 |
| 20~10 | 17 | 20~10 | 18 |
| <10 | 25 | <10 | 35 |
Table 2 Particle size distribution
| 强风化泥质粉砂岩颗粒直径/mm | 颗粒占比/% | 含黏性土碎石 颗粒直径/mm | 颗粒占比/% |
|---|---|---|---|
| >60 | 8 | >60 | 11 |
| 60~50 | 12 | 60~50 | 8 |
| 50~40 | 12 | 50~40 | 8 |
| 40~30 | 13 | 40~30 | 10 |
| 30~20 | 13 | 30~20 | 10 |
| 20~10 | 17 | 20~10 | 18 |
| <10 | 25 | <10 | 35 |
| 冲刷位置 | 流速/(m/s) | 流量占比/% |
|---|---|---|
| 中心冲刷 | 0 | 0 |
| 上部冲刷左 | 0 | 0 |
| 上部冲刷右 | 0 | 0 |
| 泥浆门前冲刷左 | 4.6 | 15.6 |
| 泥浆门前冲刷右 | 4.6 | 15.6 |
| 破碎机冲刷左 | 4.87 | 16.4 |
| 破碎机冲刷右 | 4.87 | 16.4 |
| 泥浆门后冲刷左1(BJ1) | 11.06 | 6 |
| 泥浆门后冲刷左2(BJ2) | 16.58 | 9 |
| 泥浆门后冲刷右1(BJ3) | 11.06 | 6 |
| 泥浆门后冲刷右2(BJ4) | 16.58 | 9 |
| 格栅冲刷左(GJ1) | 5.53 | 3 |
| 格栅冲刷右(GJ2) | 5.53 | 3 |
Table 3 Scour flow settings
| 冲刷位置 | 流速/(m/s) | 流量占比/% |
|---|---|---|
| 中心冲刷 | 0 | 0 |
| 上部冲刷左 | 0 | 0 |
| 上部冲刷右 | 0 | 0 |
| 泥浆门前冲刷左 | 4.6 | 15.6 |
| 泥浆门前冲刷右 | 4.6 | 15.6 |
| 破碎机冲刷左 | 4.87 | 16.4 |
| 破碎机冲刷右 | 4.87 | 16.4 |
| 泥浆门后冲刷左1(BJ1) | 11.06 | 6 |
| 泥浆门后冲刷左2(BJ2) | 16.58 | 9 |
| 泥浆门后冲刷右1(BJ3) | 11.06 | 6 |
| 泥浆门后冲刷右2(BJ4) | 16.58 | 9 |
| 格栅冲刷左(GJ1) | 5.53 | 3 |
| 格栅冲刷右(GJ2) | 5.53 | 3 |
| 泥浆门后冲刷α | 格栅内冲刷β | 刀盘转速 | 泥浆物性 | 出口压力 |
|---|---|---|---|---|
| 0°/45°/60° | 0°/30° | 1 rad/min | 0.0075 Pa·s | 3 bar |
Table 4 Parameter settings
| 泥浆门后冲刷α | 格栅内冲刷β | 刀盘转速 | 泥浆物性 | 出口压力 |
|---|---|---|---|---|
| 0°/45°/60° | 0°/30° | 1 rad/min | 0.0075 Pa·s | 3 bar |
| α/(°) | 流速/(m/s) | ||||
|---|---|---|---|---|---|
| 1层 | 2层 | 3层 | 4层 | 5层 | |
| 0 | 0.89 | 0.85 | 0.85 | 0.63 | 0.47 |
| 45 | 0.8 | 0.75 | 0.82 | 0.81 | 0.84 |
| 60 | 0.79 | 0.7 | 0.85 | 0.8 | 0.72 |
Table 5 Average flow velocity of each layer in the grille channel
| α/(°) | 流速/(m/s) | ||||
|---|---|---|---|---|---|
| 1层 | 2层 | 3层 | 4层 | 5层 | |
| 0 | 0.89 | 0.85 | 0.85 | 0.63 | 0.47 |
| 45 | 0.8 | 0.75 | 0.82 | 0.81 | 0.84 |
| 60 | 0.79 | 0.7 | 0.85 | 0.8 | 0.72 |
| 颗粒级配参考依据 | 临界不淤流速/(m/s) |
|---|---|
| 强风化泥质粉砂岩 | 1.78 |
| 含黏性土碎石 | 1.78 |
| 碎石填土 | 1.80 |
| 圆砾 | 1.79 |
| 素填土 | 1.78 |
| 含碎石粉质黏土 | 1.721 |
| 砂质粉土夹粉砂 | 1.714 |
| 全风化安山玢岩 | 1.70 |
| 强风化凝灰质含砾砂岩 | 1.68 |
Table 6 Critical non siltation flow velocity for different soil types
| 颗粒级配参考依据 | 临界不淤流速/(m/s) |
|---|---|
| 强风化泥质粉砂岩 | 1.78 |
| 含黏性土碎石 | 1.78 |
| 碎石填土 | 1.80 |
| 圆砾 | 1.79 |
| 素填土 | 1.78 |
| 含碎石粉质黏土 | 1.721 |
| 砂质粉土夹粉砂 | 1.714 |
| 全风化安山玢岩 | 1.70 |
| 强风化凝灰质含砾砂岩 | 1.68 |
| 1 | 李金运. 盾构法施工技术在水利地下设施工程中的应用探究[J]. 居舍, 2020(26): 59-60. |
| Li J Y. Application of shield construction technology in water conservancy underground facilities engineering[J]. Jushe, 2020(26): 59-60. | |
| 2 | 孔玉清. 泥水盾构环流系统及排泥管携碴能力分析与应用[J]. 现代隧道技术, 2018, 55(3): 205-213. |
| Kong Y Q. Analysis of the circulation system of a slurry shield and the muck carrying ability of a dredging pipe[J]. Modern Tunnelling Technology, 2018, 55(3): 205-213. | |
| 3 | Anagnostou G, Kovári K. The face stability of slurry-shield-driven tunnels[J]. Tunnelling and Underground Space Technology, 1994, 9(2): 165-174. |
| 4 | 陈黄腾. 盾构机泥浆环流系统设计分析[J]. 河南科技, 2021, 40(3): 84-87. |
| Chen H T. Analysis on the design of mud circulation system of shield machine[J]. Henan Science and Technology, 2021, 40(3): 84-87. | |
| 5 | 王平. 中国超大直径盾构法隧道市场发展形势分析[J]. 建筑科技, 2020, 4(1): 42-46. |
| Wang P. China super-large diameter shielding tunnel market development[J]. Building Technology, 2020, 4(1): 42-46. | |
| 6 | 竺维彬, 钟长平, 米晋生, 等. 超大直径复合式盾构施工技术挑战和展望[J]. 现代隧道技术, 2021, 58(3): 6-16, 42. |
| Zhu W B, Zhong C P, Mi J S, et al. Challenges and prospects of construction technology for extra-large diameter composite shields[J]. Modern Tunnelling Technology, 2021, 58(3): 6-16, 42. | |
| 7 | Zhang Z M, Lin C G, Wu S M. Slurry shield tunnelling in clayey soils: typical problems and countermeasures[J]. Advanced Materials Research, 2011, 1269(243/244/245/246/247/248/249): 2944-2947. |
| 8 | Zumsteg R, Puzrin A M, Anagnostou G. Effects of slurry on stickiness of excavated clays and clogging of equipment in fluid supported excavations[J]. Tunnelling and Underground Space Technology, 2016, 58: 197-208. |
| 9 | 朱伟, 钱勇进, 闵凡路, 等. 中国泥水盾构使用现状及若干问题[J]. 隧道建设, 2019, 39(5): 724-735. |
| Zhu W, Qian Y J, Min F L, et al. The current status and some problems of slurry shield in China[J]. Tunnel Construction, 2019, 39(5): 724-735. | |
| 10 | 竺维彬, 钟长平, 黄威然, 等. 盾构施工“滞排” 成因分析和对策研究[J]. 现代隧道技术, 2014, 51(5): 23-32. |
| Zhu W B, Zhong C P, Huang W R, et al. Cause analysis and countermeasures for “hindered” mucking in shield construction[J]. Modern Tunnelling Technology, 2014, 51(5): 23-32. | |
| 11 | 姜桥. 超大直径泥水盾构防滞排关键技术研究[J]. 隧道建设, 2021, 41(S2): 620-625. |
| Jiang Q. Key technology of hysteresis control for super-large-diameter slurry shield[J]. Tunnel Construction, 2021, 41(S2): 620-625. | |
| 12 | Eddingfield D L, Albrecht M. Effect of an air-injected shroud on the breakup length of a high-velocity waterjet[M]//Erosion: Prevention and Useful Applications. Pennsylvania: ASTM International, 1979: 461-472. |
| 13 | Momber A W. Concrete failure due to air-water jet impingement[J]. Journal of Materials Science, 2000, 35(11): 2785-2789. |
| 14 | Annoni M, Arleo F, Malmassari C. CFD aided design and experimental validation of an innovative air assisted pure water jet cutting system[J]. Journal of Materials Processing Technology, 2014, 214(8): 1647-1657. |
| 15 | 李记玉. 气体保护射流特性及破岩实验研究[D]. 东营: 中国石油大学, 2008. |
| Li J Y. Study on Characteristics of gas shrouded water jet and rock-erosion experiments[D]. Dongying: China University of Petroleum, 2008. | |
| 16 | 胡东, 王晓川, 康勇, 等. 自振脉冲气液射流振荡及其冲蚀煤岩效应[J]. 中国矿业大学学报, 2015, 44(6): 983-989. |
| Hu D, Wang X C, Kang Y, et al. Oscillating characteristics of the self-excited pulsed air-water jet and its erosion performance of coal-rock[J]. Journal of China University of Mining & Technology, 2015, 44(6): 983-989. | |
| 17 | 卢义玉, 葛兆龙, 李晓红, 等. 高压空化水射流破岩主要影响因素的研究[J]. 四川大学学报(工程科学版), 2009, 41(6): 1-5. |
| Lu Y Y, Ge Z L, Li X H, et al. Study on main factors of rock breakage with high-pressure cavitating water jets[J]. Journal of Sichuan University, 2009, 41(6): 1-5. | |
| 18 | Babcock H A. Heterogeneous flow of heterogeneous solids[M]//Advances in Solid-Liquid Flow in Pipes and its Application. Amsterdam: Elsevier, 1971: 125-148. |
| 19 | Wasp E J, Kenny J P, Gandhi R L. Solid-Liquid Flow Slurry Pipeline Transportation[M]. Houston: Gulf Pub. Co., 1979. |
| 20 | 费祥俊, 王可钦, 翟大潜, 等. 长距离管道输送中浆体物理特性及输送参数的试验研究[J]. 水利学报, 1984 (11): 15-25. |
| Fei X J, Wang K Q, Zhai D Q, et al. Experimental study on physical properties and transport parameters of slurry in long distance pipeline transportation[J]. Journal of Hydraulic Engineering, 1984 (11): 15-25. | |
| 21 | Liu M B, Liao S M, Shi Z H, et al. Analytical study and field investigation on the effects of clogging in slurry shield tunneling[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2023, 133: 104957. |
| 22 | 刘乐. 泥水盾构环流系统冲刷效率的影响因素研究[J]. 工程机械与维修, 2022(6): 284-287. |
| Liu L. Study on influencing factors of scour efficiency of slurry shield circulating system[J]. Construction Machinery & Maintenance, 2022(6): 284-287. | |
| 23 | 郭守志. 大直径泥水盾构滞排预警模型研究及应用[J]. 铁道建筑技术, 2022(10): 43-45, 65. |
| Guo S Z. Research and application of clogging prediction model in large-diameter slurry shield construction[J]. Railway Construction Technology, 2022(10): 43-45, 65. | |
| 24 | 吕萍. 抗泥型聚羧酸减水剂研究及应用的分析[J]. 化工管理, 2019(9): 46-47. |
| Lyu P. Research and application analysis of mud-resistant polycarboxylic acid water reducer[J]. Chemical Engineering Management, 2019(9): 46-47. | |
| 25 | 葛欣, 于连林, 刘晓杰. 浅析泥土对不同结构聚羧酸减水剂的吸附规律[J]. 上海化工, 2014, 39(10): 15-19. |
| Ge X, Yu L L, Liu X J. Analysis on absorption rule of polycarboxylate superplasticizers with various structures in clay[J]. Shanghai Chemical Industry, 2014, 39(10): 15-19. | |
| 26 | 穆文庆. 盾构渣土改良剂在黏土地层中的研究应用[J]. 广东化工, 2023, 50(10): 25-27. |
| Mu W Q. Research and application of shield muck improver in clay layer [J]. Guangdong Chemical Industry, 2023, 50(10): 25-27. | |
| 27 | 郑大锋, 邱学青, 楼宏铭, 等. 不同相对分子质量木质素磺酸钙在盾构砂浆中的应用[J]. 化工学报, 2007, 58(9): 2382-2387. |
| Zheng D F, Qiu X Q, Lou H M, et al. Utilization of calcium lignosulfonate with different molecular masses in mortar for shield tunneling method [J]. Journal of Chemical Industry and Engineering(China), 2007, 58(9): 2382-2387. | |
| 28 | 严辉. 盾构隧道施工中刀盘泥饼的形成机理和防治措施[J]. 现代隧道技术, 2007(4): 24-27, 35. |
| Yan H. Mechanism of the formation and the prevention of clay cakes in shield tunneling[J]. Modern Tunnelling Technology, 2007(4): 24-27, 35. | |
| 29 | Sass I, Burbaum U. A method for assessing adhesion of clays to tunneling machines[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(1): 27-34. |
| 30 | Zumsteg R, Puzrin A M. Stickiness and adhesion of conditioned clay pastes[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2012, 31: 86-96. |
| 31 | 樊兴. 石油化工工艺管道的腐蚀及防护技术应用[J]. 中国石油和化工标准与质量, 2024, 44(10): 157-159. |
| Fan X. Corrosion of petrochemical process pipeline and application of protective technology[J]. China Petroleum and Chemical Standard and Quality, 2024, 44(10): 157-159. | |
| 32 | 黄昌富, 孙丹丹, 郑太毅, 等. 硫酸盐侵蚀盾构隧道管片时变损伤特性及耐久性研究[J]. 土木工程学报, 2024, 57(S1): 128-133. |
| Huang C F, Sun D D, Zheng T Y, et al. Time-varying damage characteristics and durability of shield tunnel segments under sulfate attack[J]. China Civil Engineering Journal, 2024, 57(S1): 128-133. | |
| 33 | 张志恒. 盾构机刀具电化学耐腐蚀层试验[J]. 装备机械, 2023(2): 83-88. |
| Zhang Z H. The magazine on equipment machinery [J]. The Magazine on Equipment Machinery, 2023(2): 83-88. | |
| 34 | Pitt M, 刘海君. 马氏漏斗及钻井液黏度: 油田应用的新方程[J]. 国外油田工程, 2001(12): 28-31. |
| Pitt M, Liu H J. Markov funnel and drilling fluid viscosity: a new equation for oilfield application[J]. Foreign Oilfield Engineering, 2001(12): 28-31. | |
| 35 | 费祥俊. 浆体与粒状物料输送水力学[M]. 北京: 清华大学出版社, 1994. |
| Fei X J. Hydraulics of Slurry and Granular Material Transportation[M]. Beijing: Tsinghua University Press, 1994. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [4] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [5] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
| [6] | Chengcheng XU, Suola SHAO, Wenjian WEI, Xu ZHENG. Research on heating performance of direct-condensation thermal storage aluminum radiant heating panel under multiple working conditions [J]. CIESC Journal, 2025, 76(4): 1545-1558. |
| [7] | Dongliang XU, Binbin ZHAO, Yimei SUN, Tingting LIU, Xiaoran LIU, Minggong CHEN. Simulation and optimal design of RPB based on modified porous medium model [J]. CIESC Journal, 2025, 76(4): 1569-1582. |
| [8] | Wenlong JIA, Huan XIAO, Xiangyu LENG, Qiaojing HUANG, Chengwei LIU, Xia WU. Experimental and numerical simulation of ultrasonic cavitation microjet cleaning of heavy deposition in crude oil storage tank [J]. CIESC Journal, 2025, 76(3): 1288-1296. |
| [9] | Yanfang YU, Puyu ZHANG, Huibo MENG, Wen SUN, Wen LI, Wenlong QIAO, Mengqiong ZHANG. Experimental study on heat transfer and turbulent fluctuation characteristics of biomimetic conch static mixer [J]. CIESC Journal, 2025, 76(3): 1040-1049. |
| [10] | Jiayi YAO, Donghui ZHANG, Zhongli TANG, Wenbin LI. Research on carbon capture by pressure swing adsorption based on two-stage dual reflux [J]. CIESC Journal, 2025, 76(2): 744-754. |
| [11] | Jingyu JIA, Deqi KONG, Yuanhui SHEN, Donghui ZHANG, Wenbin LI, Zhongli TANG. Simulation and analysis of ammonia separation process by pressure swing adsorption from synthetic ammonia reactor-off gas [J]. CIESC Journal, 2025, 76(2): 718-730. |
| [12] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
| [13] | Ke ZHANG, Weijie REN, Mengna WANG, Kaifeng FAN, Liping CHANG, Jiabin LI, Tao MA, Jinping TIAN. Liquid-liquid mixing characteristics of Bunsen reaction products in microchannels [J]. CIESC Journal, 2025, 76(2): 623-636. |
| [14] | Zeyu ZHANG, Ping WANG, Kailun DAI, Weijia QIAN, Subhajit Roy, Ruiyang SHUAI, Antonio Ferrante. Combustion characteristics and NO production of axially staged premixed NH3/CH4 turbulent swirling flames [J]. CIESC Journal, 2025, 76(2): 835-845. |
| [15] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Current status and prospects of research on fluidization characteristics of high-density particles [J]. CIESC Journal, 2025, 76(2): 466-483. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||