CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5965-5979.DOI: 10.11949/0438-1157.20250705
• Intelligent process engineering • Previous Articles
Jinyi LIU(
), Long CHEN, Qiao WANG, Lirong FU, Ying ZHAO
Received:2025-06-30
Revised:2025-07-29
Online:2025-12-19
Published:2025-11-25
Contact:
Jinyi LIU
通讯作者:
刘进一
作者简介:刘进一(1989—),女,博士,讲师,993632@ hainanu.edu.cn
基金资助:CLC Number:
Jinyi LIU, Long CHEN, Qiao WANG, Lirong FU, Ying ZHAO. Multi-objective optimization of solid oxide fuel cell integrated system based on response surface and genetic algorithm[J]. CIESC Journal, 2025, 76(11): 5965-5979.
刘进一, 陈龙, 王巧, 付丽荣, 赵映. 基于响应面与遗传算法的固体氧化物燃料电池集成系统多目标优化[J]. 化工学报, 2025, 76(11): 5965-5979.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 效应值 | 平方和 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| A | 0.00577 | 0.0001 | 0.0001 | 461.71 | 0.0296 | 显著 |
| B | 0.0439 | 0.0058 | 0.0058 | 28846.47 | 0.0037 | 极显著 |
| C | 0.0447 | 0.0060 | 0.0060 | 29724.87 | 0.0037 | 极显著 |
| D | 0.1968 | 0.1162 | 0.1162 | 578000.00 | 0.0008 | 极显著 |
| E | 0.2391 | 0.1715 | 0.1715 | 852000.00 | 0.0007 | 极显著 |
Table1 Significance analysis of the PB experiment
| 参数 | 效应值 | 平方和 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| A | 0.00577 | 0.0001 | 0.0001 | 461.71 | 0.0296 | 显著 |
| B | 0.0439 | 0.0058 | 0.0058 | 28846.47 | 0.0037 | 极显著 |
| C | 0.0447 | 0.0060 | 0.0060 | 29724.87 | 0.0037 | 极显著 |
| D | 0.1968 | 0.1162 | 0.1162 | 578000.00 | 0.0008 | 极显著 |
| E | 0.2391 | 0.1715 | 0.1715 | 852000.00 | 0.0007 | 极显著 |
| 方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 | |||
|---|---|---|---|---|---|---|---|---|---|
| R2 0.9673 | 修正R2 0.9232 | 信噪比显著 16.8110 | 变异系数 4.40 | ||||||
| 模型 | 6967.46 | 35 | 199.07 | 21.96 | <0.0001 | 极显著 | |||
| F: pair | 38.32 | 1 | 38.32 | 4.23 | 0.0421 | 显著 | |||
| G: pfuel | 40.04 | 1 | 40.04 | 4.42 | 0.03967 | 显著 | |||
| H: ppump | 60.98 | 1 | 60.98 | 6.72 | 0.01159 | 显著 | |||
| I:ηHE | 69.68 | 1 | 69.68 | 7.68 | 0.0072 | 显著 | |||
| J: TSOFC | 1284.79 | 1 | 1284.79 | 141.76 | <0.0001 | 极显著 | |||
| K: V | 32.17 | 1 | 32.17 | 3.55 | 0.0708 | 不显著 | |||
| L: | 1550.40 | 1 | 1550.40 | 171.07 | <0.0001 | 极显著 | |||
| FG | 42.53 | 1 | 42.53 | 4.69 | 0.03391 | 显著 | |||
| FH | 4.35 | 1 | 4.35 | 0.48 | 0.6569 | 不显著 | |||
| FI | 26.82 | 1 | 26.82 | 2.96 | 0.8989 | 不显著 | |||
| FJ | 6.25 | 1 | 6.25 | 0.69 | 0.5330 | 不显著 | |||
| FK | 1.54 | 1 | 1.54 | 0.17 | 0.1226 | 不显著 | |||
| FL | 2.08 | 1 | 2.08 | 0.23 | 0.1690 | 不显著 | |||
| GH | 3.90 | 1 | 3.90 | 0.43 | 0.3257 | 不显著 | |||
| GI | 1.36 | 1 | 1.36 | 0.15 | 0.0997 | 不显著 | |||
| GJ | 16.67 | 1 | 16.67 | 1.84 | 0.8001 | 不显著 | |||
| GK | 1.18 | 1 | 1.18 | 0.13 | 0.0764 | 不显著 | |||
| GL | 1.09 | 1 | 1.09 | 0.12 | 0.0669 | 不显著 | |||
| HI | 50.10 | 1 | 50.10 | 5.53 | 0.0210 | 显著 | |||
| HJ | 13.05 | 1 | 13.05 | 1.44 | 0.2139 | 不显著 | |||
| HK | 5.44 | 1 | 5.44 | 0.60 | 0.5770 | 不显著 | |||
| HL | 15.86 | 1 | 15.86 | 1.75 | 0.1863 | 不显著 | |||
| IJ | 7.43 | 1 | 7.43 | 0.82 | 0.4454 | 不显著 | |||
| IK | 6.98 | 1 | 6.98 | 0.77 | 0.4721 | 不显著 | |||
| IL | 4.80 | 1 | 4.80 | 0.53 | 0.6301 | 不显著 | |||
| JK | 1.21 | 1 | 1.21 | 0.1332 | 0.7181 | 不显著 | |||
| JL | 41.55 | 1 | 41.55 | 4.58 | 0.0418 | 显著 | |||
| KL | 157.97 | 1 | 157.97 | 17.43 | 0.0003 | 显著 | |||
| F2 | 12.01 | 1 | 12.01 | 1.33 | 0.2601 | 不显著 | |||
| G2 | 0.9242 | 1 | 0.9242 | 0.1020 | 0.7520 | 不显著 | |||
| H2 | 20.91 | 1 | 20.91 | 2.31 | 0.1409 | 不显著 | |||
| I2 | 19.60 | 1 | 19.60 | 2.16 | 0.1534 | 不显著 | |||
| J2 | 2602.41 | 1 | 2602.41 | 287.14 | <0.0001 | 极显著 | |||
| K2 | 2.15 | 1 | 2.15 | 0.2377 | 0.6299 | 不显著 | |||
| L2 | 1339.39 | 1 | 1339.39 | 147.78 | <0.0001 | 极显著 | |||
| 残差 | 235.64 | 26 | 9.06 | ||||||
Table 2 Variance analysis for the BBD of the system recession rate model
| 方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 | |||
|---|---|---|---|---|---|---|---|---|---|
| R2 0.9673 | 修正R2 0.9232 | 信噪比显著 16.8110 | 变异系数 4.40 | ||||||
| 模型 | 6967.46 | 35 | 199.07 | 21.96 | <0.0001 | 极显著 | |||
| F: pair | 38.32 | 1 | 38.32 | 4.23 | 0.0421 | 显著 | |||
| G: pfuel | 40.04 | 1 | 40.04 | 4.42 | 0.03967 | 显著 | |||
| H: ppump | 60.98 | 1 | 60.98 | 6.72 | 0.01159 | 显著 | |||
| I:ηHE | 69.68 | 1 | 69.68 | 7.68 | 0.0072 | 显著 | |||
| J: TSOFC | 1284.79 | 1 | 1284.79 | 141.76 | <0.0001 | 极显著 | |||
| K: V | 32.17 | 1 | 32.17 | 3.55 | 0.0708 | 不显著 | |||
| L: | 1550.40 | 1 | 1550.40 | 171.07 | <0.0001 | 极显著 | |||
| FG | 42.53 | 1 | 42.53 | 4.69 | 0.03391 | 显著 | |||
| FH | 4.35 | 1 | 4.35 | 0.48 | 0.6569 | 不显著 | |||
| FI | 26.82 | 1 | 26.82 | 2.96 | 0.8989 | 不显著 | |||
| FJ | 6.25 | 1 | 6.25 | 0.69 | 0.5330 | 不显著 | |||
| FK | 1.54 | 1 | 1.54 | 0.17 | 0.1226 | 不显著 | |||
| FL | 2.08 | 1 | 2.08 | 0.23 | 0.1690 | 不显著 | |||
| GH | 3.90 | 1 | 3.90 | 0.43 | 0.3257 | 不显著 | |||
| GI | 1.36 | 1 | 1.36 | 0.15 | 0.0997 | 不显著 | |||
| GJ | 16.67 | 1 | 16.67 | 1.84 | 0.8001 | 不显著 | |||
| GK | 1.18 | 1 | 1.18 | 0.13 | 0.0764 | 不显著 | |||
| GL | 1.09 | 1 | 1.09 | 0.12 | 0.0669 | 不显著 | |||
| HI | 50.10 | 1 | 50.10 | 5.53 | 0.0210 | 显著 | |||
| HJ | 13.05 | 1 | 13.05 | 1.44 | 0.2139 | 不显著 | |||
| HK | 5.44 | 1 | 5.44 | 0.60 | 0.5770 | 不显著 | |||
| HL | 15.86 | 1 | 15.86 | 1.75 | 0.1863 | 不显著 | |||
| IJ | 7.43 | 1 | 7.43 | 0.82 | 0.4454 | 不显著 | |||
| IK | 6.98 | 1 | 6.98 | 0.77 | 0.4721 | 不显著 | |||
| IL | 4.80 | 1 | 4.80 | 0.53 | 0.6301 | 不显著 | |||
| JK | 1.21 | 1 | 1.21 | 0.1332 | 0.7181 | 不显著 | |||
| JL | 41.55 | 1 | 41.55 | 4.58 | 0.0418 | 显著 | |||
| KL | 157.97 | 1 | 157.97 | 17.43 | 0.0003 | 显著 | |||
| F2 | 12.01 | 1 | 12.01 | 1.33 | 0.2601 | 不显著 | |||
| G2 | 0.9242 | 1 | 0.9242 | 0.1020 | 0.7520 | 不显著 | |||
| H2 | 20.91 | 1 | 20.91 | 2.31 | 0.1409 | 不显著 | |||
| I2 | 19.60 | 1 | 19.60 | 2.16 | 0.1534 | 不显著 | |||
| J2 | 2602.41 | 1 | 2602.41 | 287.14 | <0.0001 | 极显著 | |||
| K2 | 2.15 | 1 | 2.15 | 0.2377 | 0.6299 | 不显著 | |||
| L2 | 1339.39 | 1 | 1339.39 | 147.78 | <0.0001 | 极显著 | |||
| 残差 | 235.64 | 26 | 9.06 | ||||||
| 方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| R2 0.9988 | 修正R2 0.9972 | 信噪比 109.8268 | 变异系数 0.5896 | |||
| 模型 | 3213.0200 | 35 | 91.8000 | 613.83 | <0.0001 | 极显著 |
| F: pair | 0.6930 | 1 | 0.6930 | 6.03 | 0.0201 | 显著 |
| G: pfuel | 0.5400 | 1 | 0.5400 | 4.69 | 0.0339 | 显著 |
| H: ppump | 0.5750 | 1 | 0.5750 | 5.00 | 0.0311 | 显著 |
| I: ηHE | 0.7240 | 1 | 0.7240 | 6.30 | 0.0159 | 显著 |
| J: TSOFC | 1433.1700 | 1 | 1433.1700 | 9582.95 | <0.0001 | 极显著 |
| K: V | 3.8200 | 1 | 3.8200 | 25.53 | <0.0001 | 极显著 |
| L: | 1715.4700 | 1 | 1715.4700 | 11470.53 | <0.0001 | 极显著 |
| FG | 0.4860 | 1 | 0.4860 | 4.23 | 0.0477 | 显著 |
| FH | 0.0437 | 1 | 0.0437 | 0.38 | 0.7101 | 不显著 |
| FI | 0.0310 | 1 | 0.0310 | 0.27 | 0.7990 | 不显著 |
| FJ | 0.1391 | 1 | 0.1391 | 1.21 | 0.2661 | 不显著 |
| FK | 0.0999 | 1 | 0.0999 | 0.87 | 0.3774 | 不显著 |
| FL | 0.0632 | 1 | 0.0632 | 0.55 | 0.5866 | 不显著 |
| GH | 0.2391 | 1 | 0.2391 | 2.08 | 0.1559 | 不显著 |
| GI | 0.0563 | 1 | 0.0563 | 0.49 | 0.6334 | 不显著 |
| GJ | 0.3196 | 1 | 0.3196 | 2.78 | 0.1197 | 不显著 |
| GK | 0.0816 | 1 | 0.0816 | 0.71 | 0.4770 | 不显著 |
| GL | 0.1127 | 1 | 0.1127 | 0.98 | 0.3391 | 不显著 |
| HI | 0.8050 | 1 | 0.8050 | 7.00 | 0.0128 | 显著 |
| HJ | 0.1586 | 1 | 0.1586 | 1.38 | 0.2408 | 不显著 |
| HK | 0.6103 | 1 | 0.6103 | 4.08 | 0.5038 | 不显著 |
| HL | 0.3572 | 1 | 0.3572 | 2.39 | 0.1343 | 不显著 |
| IJ | 0.1333 | 1 | 0.1333 | 1.16 | 0.3018 | 不显著 |
| IK | 0.1357 | 1 | 0.1357 | 1.18 | 0.2933 | 不显著 |
| IL | 0.2747 | 1 | 0.2747 | 2.39 | 0.1107 | 不显著 |
| JK | 0.1688 | 1 | 0.1688 | 1.13 | 0.2978 | 不显著 |
| JL | 0.5200 | 1 | 0.5200 | 4.53 | 0.0329 | 显著 |
| KL | 0.4400 | 1 | 0.4400 | 3.83 | 0.0418 | 显著 |
| F2 | 0.0629 | 1 | 0.0629 | 0.42 | 0.5224 | 不显著 |
| G2 | 0.0011 | 1 | 0.0011 | <0.01 | 0.9336 | 不显著 |
| H2 | 0.1168 | 1 | 0.1168 | 0.78 | 0.3849 | 不显著 |
| I2 | 0.0476 | 1 | 0.0476 | 0.32 | 0.5774 | 不显著 |
| J2 | 30.7700 | 1 | 30.7700 | 205.78 | <0.0001 | 极显著 |
| K2 | 16.6400 | 1 | 16.6400 | 111.29 | <0.0001 | 极显著 |
| L2 | 6.2200 | 1 | 6.2200 | 41.58 | <0.0001 | 极显著 |
| 残差 | 3.8900 | 26 | 0.1149 | |||
Table 3 Variance analysis for the BBD of the system efficiency model
| 方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| R2 0.9988 | 修正R2 0.9972 | 信噪比 109.8268 | 变异系数 0.5896 | |||
| 模型 | 3213.0200 | 35 | 91.8000 | 613.83 | <0.0001 | 极显著 |
| F: pair | 0.6930 | 1 | 0.6930 | 6.03 | 0.0201 | 显著 |
| G: pfuel | 0.5400 | 1 | 0.5400 | 4.69 | 0.0339 | 显著 |
| H: ppump | 0.5750 | 1 | 0.5750 | 5.00 | 0.0311 | 显著 |
| I: ηHE | 0.7240 | 1 | 0.7240 | 6.30 | 0.0159 | 显著 |
| J: TSOFC | 1433.1700 | 1 | 1433.1700 | 9582.95 | <0.0001 | 极显著 |
| K: V | 3.8200 | 1 | 3.8200 | 25.53 | <0.0001 | 极显著 |
| L: | 1715.4700 | 1 | 1715.4700 | 11470.53 | <0.0001 | 极显著 |
| FG | 0.4860 | 1 | 0.4860 | 4.23 | 0.0477 | 显著 |
| FH | 0.0437 | 1 | 0.0437 | 0.38 | 0.7101 | 不显著 |
| FI | 0.0310 | 1 | 0.0310 | 0.27 | 0.7990 | 不显著 |
| FJ | 0.1391 | 1 | 0.1391 | 1.21 | 0.2661 | 不显著 |
| FK | 0.0999 | 1 | 0.0999 | 0.87 | 0.3774 | 不显著 |
| FL | 0.0632 | 1 | 0.0632 | 0.55 | 0.5866 | 不显著 |
| GH | 0.2391 | 1 | 0.2391 | 2.08 | 0.1559 | 不显著 |
| GI | 0.0563 | 1 | 0.0563 | 0.49 | 0.6334 | 不显著 |
| GJ | 0.3196 | 1 | 0.3196 | 2.78 | 0.1197 | 不显著 |
| GK | 0.0816 | 1 | 0.0816 | 0.71 | 0.4770 | 不显著 |
| GL | 0.1127 | 1 | 0.1127 | 0.98 | 0.3391 | 不显著 |
| HI | 0.8050 | 1 | 0.8050 | 7.00 | 0.0128 | 显著 |
| HJ | 0.1586 | 1 | 0.1586 | 1.38 | 0.2408 | 不显著 |
| HK | 0.6103 | 1 | 0.6103 | 4.08 | 0.5038 | 不显著 |
| HL | 0.3572 | 1 | 0.3572 | 2.39 | 0.1343 | 不显著 |
| IJ | 0.1333 | 1 | 0.1333 | 1.16 | 0.3018 | 不显著 |
| IK | 0.1357 | 1 | 0.1357 | 1.18 | 0.2933 | 不显著 |
| IL | 0.2747 | 1 | 0.2747 | 2.39 | 0.1107 | 不显著 |
| JK | 0.1688 | 1 | 0.1688 | 1.13 | 0.2978 | 不显著 |
| JL | 0.5200 | 1 | 0.5200 | 4.53 | 0.0329 | 显著 |
| KL | 0.4400 | 1 | 0.4400 | 3.83 | 0.0418 | 显著 |
| F2 | 0.0629 | 1 | 0.0629 | 0.42 | 0.5224 | 不显著 |
| G2 | 0.0011 | 1 | 0.0011 | <0.01 | 0.9336 | 不显著 |
| H2 | 0.1168 | 1 | 0.1168 | 0.78 | 0.3849 | 不显著 |
| I2 | 0.0476 | 1 | 0.0476 | 0.32 | 0.5774 | 不显著 |
| J2 | 30.7700 | 1 | 30.7700 | 205.78 | <0.0001 | 极显著 |
| K2 | 16.6400 | 1 | 16.6400 | 111.29 | <0.0001 | 极显著 |
| L2 | 6.2200 | 1 | 6.2200 | 41.58 | <0.0001 | 极显著 |
| 残差 | 3.8900 | 26 | 0.1149 | |||
| 决策变量 | 符号 | 上限 | 下限 | 单位 |
|---|---|---|---|---|
| 空气压缩机工作压力 | pair | 10 | 1 | atm |
| 燃料压缩机工作压力 | pfuel | 10 | 1 | atm |
| 水泵工作压力 | ppump | 5 | 0.5 | atm |
| 热交换效率 | ηHE | 0.9 | 0.5 | — |
| 工作温度 | TSOFC | 900 | 600 | ℃ |
| 工作电压 | V | 0.95 | 0.1 | V |
| 氧气浓度 | 0.448 | 0.21 | — |
Table 4 Constraints on decision parameters
| 决策变量 | 符号 | 上限 | 下限 | 单位 |
|---|---|---|---|---|
| 空气压缩机工作压力 | pair | 10 | 1 | atm |
| 燃料压缩机工作压力 | pfuel | 10 | 1 | atm |
| 水泵工作压力 | ppump | 5 | 0.5 | atm |
| 热交换效率 | ηHE | 0.9 | 0.5 | — |
| 工作温度 | TSOFC | 900 | 600 | ℃ |
| 工作电压 | V | 0.95 | 0.1 | V |
| 氧气浓度 | 0.448 | 0.21 | — |
| [1] | 邹才能, 马锋, 潘松圻, 等. 世界能源转型革命与绿色智慧能源体系内涵及路径[J]. 石油勘探与开发, 2023, 50(3): 633-647. |
| Zou C N, Ma F, Pan S Q, et al. Global energy transition revolution and the connotation and pathway of the green and intelligent energy system[J]. Petroleum Exploration and Development, 2023, 50(3): 633-647. | |
| [2] | 邹才能, 何东博, 贾成业, 等. 世界能源转型内涵、路径及其对碳中和的意义[J]. 石油学报, 2021, 42(2): 233-247. |
| Zou C N, He D B, Jia C Y, et al. Connotation and pathway of world energy transition and its significance for carbon neutral[J]. Acta Petrolei Sinica, 2021, 42(2): 233-247. | |
| [3] | Zhang X, Xu W T, Rauf A, et al. Transitioning from conventional energy to clean renewable energy in G7 countries: a signed network approach[J]. Energy, 2024, 307: 132655. |
| [4] | 毕锐, 王孝淦, 袁华凯, 等. 考虑供需双侧响应和碳交易的氢能综合能源系统鲁棒调度[J]. 电力系统保护与控制, 2023, 51(12): 122-132. |
| Bi R, Wang X G, Yuan H K, et al. Robust dispatch of a hydrogen integrated energy system considering double side response and carbon trading mechanism[J]. Power System Protection and Control, 2023, 51(12): 122-132. | |
| [5] | Zhu Z G, Ning H L, Song C, et al. Effect of low plasma spraying power on anode microstructure and performance for metal-supported solid oxide fuel cells[J]. Journal of Thermal Spray Technology, 2024, 33(5): 1725-1735. |
| [6] | 洪吉超, 马世琨, 梁峰伟, 等. 氢燃料电池数字孪生技术的系统集成与智能管理[J]. 工程科学学报, 2025, 47(11): 2296-2308. |
| Hong J C, Ma S K, Liang F W, et al. System integration and intelligent management of hydrogen fuel cells based on digital twin technology[J]. Chinese Journal of Engineering, 2025, 47(11): 2296-2308. | |
| [7] | Beyrami J, Chitsaz A, Parham K, et al. Optimum performance of a single effect desalination unit integrated with a SOFC system by multi-objective thermo-economic optimization based on genetic algorithm[J]. Energy, 2019, 186: 115811. |
| [8] | Wang J Y, Hua J, Pan Z H, et al. Novel SOFC system concept with anode off-gas dual recirculation: a pathway to zero carbon emission and high energy efficiency[J]. Applied Energy, 2024, 361: 122862. |
| [9] | Khani L, Mehr A S, Yari M, et al. Multi-objective optimization of an indirectly integrated solid oxide fuel cell-gas turbine cogeneration system[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21470-21488. |
| [10] | Hosseinpour J, Sadeghi M, Chitsaz A, et al. Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a Stirling engine[J]. Energy Conversion and Management, 2017, 143: 448-458. |
| [11] | Huang Y, Turan A. Fuel sensitivity and parametric optimization of SOFC-GT hybrid system operational characteristics[J]. Thermal Science and Engineering Progress, 2019, 14: 100407. |
| [12] | Roy D, Samanta S, Ghosh S. Performance optimization through response surface methodology of an integrated biomass gasification based combined heat and power plant employing solid oxide fuel cell and externally fired gas turbine[J]. Energy Conversion and Management, 2020, 222: 113182. |
| [13] | Khoshgoftar Manesh M H, Ghorbani S, Blanco-Marigorta A M. Optimal design and analysis of a combined freshwater-power generation system based on integrated solid oxide fuel cell-gas turbine-organic Rankine cycle-multi effect distillation system[J]. Applied Thermal Engineering, 2022, 211: 118438. |
| [14] | Thanganadar D, Asfand F, Patchigolla K, et al. Techno-economic analysis of supercritical carbon dioxide cycle integrated with coal-fired power plant[J]. Energy Conversion and Management, 2021, 242: 114294. |
| [15] | Xu G P, Yu Z T, Xia L, et al. Performance improvement of solid oxide fuel cells by combining three-dimensional CFD modeling, artificial neural network and genetic algorithm[J]. Energy Conversion and Management, 2022, 268: 116026. |
| [16] | Tang Z G, Xiang Y, Li M, et al. Multi-objective optimization of liquid-cooled battery thermal management system with biomimetic fractal channels using artificial neural networks and response surface methodology[J]. International Journal of Thermal Sciences, 2024, 206: 109304. |
| [17] | Su H R, Hu Y H. Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels[J]. Chemical Engineering Journal, 2020, 402: 126235. |
| [18] | Hagen A, Wulff A C, Zielke P, et al. SOFC stacks for mobile applications with excellent robustness towards thermal stresses[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29201-29211. |
| [19] | Salvador C A F, Rego J S, Lopes T, et al. Materials selection of non-metallic glasses for planar solid-oxide fuel cell sealants[J]. Ceramics International, 2025, 51(6): 6867-6878. |
| [20] | Hesami H, Borji M, Rezapour J. Three-dimensional numerical investigation on the effect of interconnect design on the performance of internal reforming planar solid oxide fuel cell[J]. Korean Journal of Chemical Engineering, 2021, 38(12): 2423-2435. |
| [21] | Sayadian S, Ghassemi M, Ahmadi S, et al. Numerical analysis of transport phenomena in solid oxide fuel cell gas channels[J]. Fuel, 2022, 311: 122557. |
| [22] | Sayadian S, Ghassemi M, Robinson A J. Multi-physics simulation of transport phenomena in planar proton-conducting solid oxide fuel cell[J]. Journal of Power Sources, 2021, 481: 228997. |
| [23] | Milewski J, Swirski K, Santarelli M, et al. Advanced Methods of Solid Oxide Fuel Cell Modeling [M]. Berlin: Springer Science & Business Media, 2011. |
| [24] | Patcharavorachot Y, Arpornwichanop A, Chuachuensuk A. Electrochemical study of a planar solid oxide fuel cell: role of support structures[J]. Journal of Power Sources, 2008, 177(2): 254-261. |
| [25] | Wu Z, Zhu P F, Yao J, et al. Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation[J]. Energy, 2020, 192: 116613. |
| [26] | Yahya A, Ferrero D, Dhahri H, et al. Electrochemical performance of solid oxide fuel cell: experimental study and calibrated model[J]. Energy, 2018, 142: 932-943. |
| [27] | Chang J S, Jiao M H, Zhang P P, et al. Analyzing the degradation mechanism of solid oxide fuel cell during different time periods[J]. Electrochimica Acta, 2024, 498: 144615. |
| [28] | Zhu P F, Wu Z, Wang H, et al. Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network[J]. Applied Energy, 2022, 322: 119508. |
| [29] | He J, Wang X X, Jin F J, et al. System simulation and parametric analysis of low-concentration coal mine gas fed SOFC-CHP with deoxygenation and enrichment pretreatment[J]. Fuel, 2024, 373: 132300. |
| [30] | Petrone R, Hissel D, Péra M C, et al. Accelerated stress test procedures for PEM fuel cells under actual load constraints: state-of-art and proposals[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12489-12505. |
| [31] | Shao Y Q, Shen J J, Ren H, et al. The influence of microstructural evolution on performance degradation in solid oxide fuel cells[J]. Materials Science and Engineering: B, 2025, 317: 118187. |
| [1] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [2] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [3] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [4] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [5] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [6] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [7] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [8] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [9] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [10] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [11] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [12] | Yilei ZHOU, Zhi LI, Xin PENG. Design of self-optimizing control structure for continuous catalytic reforming reaction process based on surrogate model [J]. CIESC Journal, 2025, 76(9): 4499-4511. |
| [13] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [14] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [15] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||