化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 113-119.doi: 10.11949/0438-1157.20201534

• 流体力学与传递现象 • 上一篇    下一篇

双排对折型微通道换热器仿真模型开发

王兆奇1(),李孟山1,胡海涛1(),魏文建2   

  1. 1.上海交通大学机械与动力工程学院,上海 200240
    2.浙江盾安人工环境股份有限公司,浙江 绍兴 311835
  • 收稿日期:2020-10-30 修回日期:2021-01-14 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 胡海涛 E-mail:118020910379@sjtu.edu.cn;huhaitao2001@sjtu.edu.cn
  • 作者简介:王兆奇(1996—),男,硕士研究生,118020910379@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51976115)

Development of simulation model for double row folded microchannel heat exchanger

WANG Zhaoqi1(),LI Mengshan1,HU Haitao1(),WEI Wenjian2   

  1. 1.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Zhejiang DunAn Enviornment Co. ,Ltd. , Shaoxing 311835, Zhejiang, China
  • Received:2020-10-30 Revised:2021-01-14 Published:2021-06-20 Online:2021-06-20
  • Contact: HU Haitao E-mail:118020910379@sjtu.edu.cn;huhaitao2001@sjtu.edu.cn

摘要:

针对双排对折型微通道换热器,建立三维分布参数模型,基于双排对折的独特结构分别划分换热区和集流管的控制单元,并创新性提出一种基于流程的制冷剂流路描述方法。调研并整理了公开发表文献中记载的适用于微通道换热器的制冷剂侧和空气侧的换热及压降关联式,使模型能够应用于各类工况。建立模型的控制方程,并开发一种换热-压降交替迭代的快速求解算法,基于此计算换热器性能,并用试验数据验证模型的计算精度。结果表明,基于此仿真模型计算的换热器平均换热误差小于5%,制冷剂侧平均压降误差小于10%,满足实际工程需求。

关键词: 双排对折, 微通道换热器, 计算机模拟, 算法, 试验验证

Abstract:

In this paper, a structure of double row folded type microchannel heat exchanger is presented, and a three-dimension distribution parameter model is established to analyze the performance of microchannel heat exchanger with this configuration. Based on the unique structure of double row folded heat exchanger, control volume of microchannel tube and header were divided respectively, and a path-to-path description method was used to describe the flow path of the refrigerant inside the tube. The correlations of heat transfer and pressure drop for refrigerant side and air side for microchannel heat exchanger, which are recorded in the published literature, were investigated and sorted out, so that the model could be applied to various working conditions. The governing equation of the model is established, and a fast algorithm of alternating iteration of heat transfer and pressure drop is developed. The results show that the average heat transfer error calculated based on the simulation model is less than 5%, and the average pressure drop error on the refrigerant side is less than 10% compared with experimental results, which meets the actual engineering requirements.

Key words: double row folded, microchannel heat exchanger, computer simulation, algorithm, experimental validation

中图分类号: 

  • TK 172

图1

双排对折型微通道换热器结构"

图2

双排对折结构控制单元划分"

图3

集流管控制单元划分"

图4

基于流程的流路描述方式"

图5

算法流程"

图6

蒸发工况仿真值与试验值对比"

1 康盈, 柳建华, 张良, 等. 微通道换热器的研究进展及其应用前景[J]. 低温与超导, 2012, 40(6): 45-48.
Kang Y, Liu J H, Zhang L, et al. The research progress and application prospect of the microchannel heat exchanger [J]. Cryogenics & Superconductivity, 2012, 40(6): 45-48.
2 Han Y H, Liu Y, Li M, et al. A review of development of micro-channel heat exchanger applied in air-conditioning system [J]. Energy Procedia, 2012, 14: 148-153.
3 饶荣水, 陈俊伟, 蔡宗军, 等. 微通道换热器在空调器上的应用研究[J]. 制冷与空调, 2009, 9(4): 63-66, 32.
Rao R S, Chen J W, Cai Z J, et al. Application investigation of micro channel heat exchanger on air conditioner [J]. Refrigeration and Air-Conditioning, 2009, 9(4): 63-66, 32.
4 党聪聪. 插片式微通道换热器换热特性试验研究与三维参数化设计平台开发[D]. 杭州: 浙江理工大学, 2019.
Dang C C. Experimental research on heat transfer characteristic of plate-fin microchannel heat exchanger and development of three-dimensions parametric design platform [D]. Hangzhou: Zhejiang Sci-Tech University, 2019.
5 Li J, Wang S F, Zhang W J. Air-side thermal hydraulic performance of an integrated fin and micro-channel heat exchanger [J]. Energy Conversion and Management, 2011, 52(2): 983-989.
6 Deng Y B, Menon S, Lavrich Z, et al. Design, simulation, and testing of a novel micro-channel heat exchanger for natural gas cooling in automotive applications [J]. Applied Thermal Engineering, 2017, 110: 327-334.
7 Andhare R S, Shooshtari A, Dessiatoun S V, et al. Heat transfer and pressure drop characteristics of a flat plate manifold microchannel heat exchanger in counter flow configuration [J]. Applied Thermal Engineering, 2016, 96: 178-189.
8 商萍君. 风冷式微通道冷凝器的性能拟合计算模型[J]. 制冷与空调, 2018, 18(9): 25-28.
Shang P J. Calculation model of performance fitting for air-cooled micro-channel condenser [J]. Refrigeration and Air-Conditioning, 2018, 18(9): 25-28.
9 包涛, 陈蕴光, 董玉军, 等. 多元平行流冷凝器传热流动性能研究[J]. 制冷学报, 2005, 26(3): 1-5.
Bao T, Chen Y G, Dong Y J, et al. Study on heat transfer and flow characteristics of a multi - unit parallel - flow type condenser [J]. Refrigeration Journal, 2005, 26(3): 1-5.
10 云和明, 程林, 王立秋, 等. 光滑矩形微通道液体单相流动和传热的数值研究[J]. 工程热物理学报, 2007, 28(S2): 33-36.
Yun H M, Cheng L, Wang L Q, et al. The numerical research on flow and heat transfer of single-phase liquid in smooth rectangular microchannels [J]. Journal of Engineering Thermophysics, 2007, 28(S2): 33-36.
11 邵世婷, 王文. 微型通道冷凝器数值模拟与分析[J]. 上海交通大学学报, 2009, 43(2): 251-255.
Shao S T, Wang W. Numerical simulation and analysis of micro-channel condenser [J]. Journal of Shanghai Jiao Tong University, 2009, 43(2): 251-255.
12 Glazar V, Frankovic B, Trp A. Experimental and numerical study of the compact heat exchanger with different microchannel shapes [J]. International Journal of Refrigeration, 2015, 51: 144-153.
13 马虎根, 胡自成. 非共沸混合物微通道内流动沸腾特性[J]. 化工学报, 2006, 57(3): 526-529.
Ma H G, Hu Z C. Flow boiling in microchannel with nonazeotropic mixture [J]. Journal of Chemical Industry and Engineering (China), 2006, 57(3): 526-529.
14 杞卓玲, 贾力, 党超. 微细通道内非共沸工质流动沸腾换热试验研究[J]. 工程热物理学报, 2018, 39(9): 2005-2011.
Qi Z L, Jia L, Dang C. Experimental investigation on flow boiling heat transfer characteristics of zeotropic mixture in microchannels [J]. Journal of Engineering Thermophysics, 2018, 39(9): 2005-2011.
15 Zou Y, Hrnjak P S. Effects of fluid properties on two-phase flow and refrigerant distribution in the vertical header of a reversible microchannel heat exchanger - comparing R245fa, R134a, R410A, and R32 [J]. Applied Thermal Engineering, 2014, 70(1): 966-976.
16 王婷婷, 丁国良, 段钟弟, 等. 基于仿真的LNG绕管式换热器设计方法[J]. 制冷技术, 2017, 37(3): 12-17, 28.
Wang T T, Ding G L, Duan Z D, et al. A design method based on simulation for LNG spiral wound heat exchangers [J]. Chinese Journal of Refrigeration Technology, 2017, 37(3): 12-17, 28.
17 丁国良, 刘建, 董洪洲. 基于图论的翅片管换热器三维仿真软件开发[C]//中国制冷学会. 杭州, 2005: 553-557.
Ding G L, Liu J, Dong H Z. Development of three-dimensional simulation software for fin-and-tube heat exchanger based on graph theory[C]//Chinese Association of Refrigeration. Hangzhou, 2005: 553-557.
18 孙浩然, 任滔, 李智强, 等. 结合用户数据的空调器仿真平台构建[J]. 制冷技术, 2014, 34(4): 31-37.
Sun H R, Ren T, Li Z Q, et al. Development of user data integrated simulation platform for air conditioner [J]. Chinese Journal of Refrigeration Technology, 2014, 34(4): 31-37.
19 孙浩然. 基于图论的变频多联式空调系统模型开发及软件实现[D]. 上海: 上海交通大学, 2017.
Sun H R. Graph theory based system modeling and software implementation for variable refrigerant volume air conditioners [D]. Shanghai: Shanghai Jiao Tong University, 2017.
20 Ren T, Ding G L, Wang T T, et al. A general three-dimensional simulation approach for micro-channel heat exchanger based on graph theory [J]. Applied Thermal Engineering, 2013, 59(1/2): 660-674.
21 许旭东, 赵丹, 丁国良, 等. 冰箱用微通道冷凝器分相集总参数模型[J]. 化工学报, 2016, 67(S2): 217-222.
Xu X D, Zhao D, Ding G L, et al. Lumped parameter model for microchannel condenser of refrigerators [J]. CIESC Journal, 2016, 67(S2): 217-222.
22 郭梦茹, 蔡姗姗, 陈焕新, 等. 翅片管式冷凝器性能分析及多目标优化[J]. 制冷与空调, 2018, 18(4): 93-98.
Guo M R, Cai S S, Chen H X, et al. Performance analysis and multi-objective optimization of finned-tube condenser [J]. Refrigeration and Air-Conditioning, 2018, 18(4): 93-98.
23 孙浩然, 段钟弟, 丁国良. 采用适用于小管径空调器关联式的换热器仿真软件开发[C]//上海市制冷学会2013年学术年会. 上海, 2013.
Sun H R, Duan Z D, Ding G L. Deveopment of simulation tool with correlations suitable for small diameter tube heat exchanger[C]//Shanghai Institute of Refrigeration Annual Conference. Shanghai, 2013.
24 Hwang Y, Jin D H, Radermacher R. Refrigerant distribution in minichannel evaporator manifolds [J]. HVAC&R Research, 2007, 13(4): 543-555.
25 Saitoh S, Daiguji H, Hihara E. Correlation for boiling heat transfer of R-134a in horizontal tubes including effect of tube diameter [J]. International Journal of Heat and Mass Transfer, 2007, 50(25/26): 5215-5225.
26 Yu W H, France D M, Wambsganss M W, et al. Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube [J]. International Journal of Multiphase Flow, 2002, 28(6): 927-941.
27 Lee H J, Lee S Y. Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios [J]. International Journal of Multiphase Flow, 2001, 27(12): 2043-2062.
28 马磊, 谷波, 田镇, 等. 基于新流动沸腾传热关联式的微通道平行流蒸发器数值模型[J]. 上海交通大学学报, 2017, 51(9): 1043-1049.
Ma L, Gu B, Tian Z, et al. Numerical model of a microchannel parallel flow evaporator with new flow boiling heat transfer correlation [J]. Journal of Shanghai Jiao Tong University, 2017, 51(9): 1043-1049.
29 Zou Y, Hrnjak P S. Single-phase and two-phase flow pressure drop in the vertical header of microchannel heat exchanger [J]. International Journal of Refrigeration, 2014, 44: 12-22.
[1] 徐梦凯, 李舒宏, 金正浩. 氨-水-溴化锂三元工质氨吸收式制冷性能[J]. 化工学报, 2021, 72(S1): 127-133.
[2] 张弛, 李浩, 胡海涛, 朱翀, 张玉莹, 南国鹏, 舒悦. 基于自动特征工程的飞行器轴承故障诊断[J]. 化工学报, 2021, 72(S1): 430-436.
[3] 刘璐, 丁国良, 庄大伟, 杨艺菲, 杜心远. 微通道换热器百叶窗翅片排水性能的CFD模拟[J]. 化工学报, 2021, 72(S1): 91-97.
[4] 刘叶刚, 张忠林, 侯起旺, 杨景轩, 陈东良, 郝晓刚. TBCFB合成气制甲醇工艺过程的概念设计和计算机模拟[J]. 化工学报, 2021, 72(9): 4838-4846.
[5] 朱轶林, 张新敬, 徐玉杰, 丁捷, 郭欢, 陈海生. 基于遗传算法-综合计算法的生物质热解气化优化分析[J]. 化工学报, 2021, 72(9): 4910-4920.
[6] 郭金玉, 李文涛, 李元. 在线压缩KECA的自适应算法在故障检测中的应用[J]. 化工学报, 2021, 72(8): 4227-4238.
[7] 马玖辰, 易飞羽, 张秋丽, 王宇. 富水型热储层深井套管式换热器传热特性研究[J]. 化工学报, 2021, 72(8): 4134-4145.
[8] 韩正恒, 崔国民, 赵倩倩, 肖媛, 张冠华. RWCE算法中采用单元重构策略激励换热网络结构优化[J]. 化工学报, 2021, 72(6): 3316-3327.
[9] 谢昊源, 黄群星, 林晓青, 李晓东, 严建华. 基于图像深度学习的垃圾热值预测研究[J]. 化工学报, 2021, 72(5): 2773-2782.
[10] 孙浩然, 吕中原, 吴成云, 胡海涛. 机载补气增焓制冷系统动态仿真模型[J]. 化工学报, 2021, 72(5): 2484-2492.
[11] 赵杨, 熊伟丽. 基于多策略自适应差分进化算法的污水处理过程多目标优化控制[J]. 化工学报, 2021, 72(4): 2167-2177.
[12] 顾俊发, 许明阳, 马方圆, 林治宇, 纪成, 王璟德, 孙巍. 基于MIC的支持向量回归及其在化工过程中的应用[J]. 化工学报, 2021, 72(3): 1480-1486.
[13] 朱雄卓, 张瀚文, 杨春节. 基于高斯混合模型的MWPCA高炉异常监测算法[J]. 化工学报, 2021, 72(3): 1539-1548.
[14] 蒋白桦, 吕雪峰, 刘玉龙. 基于智能体的石化智能工厂信息物理系统实现研究[J]. 化工学报, 2021, 72(3): 1575-1584.
[15] 李勇, 钱锋, 宋育梅. 基于特征选择的常减压装置模型及在计划优化中的应用[J]. 化工学报, 2021, 72(3): 1419-1429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[2] 黄福明,张国伟,胡春圃,应圣康. 硅溶胶/苯乙烯-丙烯酸酯共聚物无机-有机杂化水分散液的制备和表征[J]. CIESC Journal, 2005, 13(6): 816 -823 .
[3] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[4] 王斐, 汪文川, 黄世萍, 滕加伟, 谢在库. 正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型[J]. CIESC Journal, 2007, 15(3): 376 -386 .
[5] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[6] 潘海华, 李啸风, 李浩然, 刘迪霞, 韩世钧. 双亲分子在油水界面的行为研究[J]. CIESC Journal, 2003, 11(4): 446 -451 .
[7] 尚智, 杨瑞昌, FUKUDA Kenji, 钟勇, 巨泽建. 用扩散流动模型分析悬浮床内的气固两相向上流动[J]. CIESC Journal, 2003, 11(5): 497 -503 .
[8] 佟晓冬, 杨征, 董晓燕, 孙彦. 利用膨胀床吸附技术单步纯化分子伴侣—GroEL[J]. CIESC Journal, 2003, 11(4): 460 -463 .
[9] 代小平, 余长春, 李强, 张长斌, 江启滢, 沈师孔. 联合两段氧化制合成气/F-T合成的GTL工艺和催化剂[J]. CIESC Journal, 2003, 11(1): 85 -89 .
[10] 毕明树, 喻建良, 周一卉, 王淑兰, 丁信伟, ABULITI Abudula. 开敞空间蒸气云爆炸压力的实验研究[J]. CIESC Journal, 2003, 11(1): 90 -93 .