化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3841-3854.DOI: 10.11949/0438-1157.20230729
收稿日期:
2023-07-13
修回日期:
2023-09-03
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
李智,杨明磊
作者简介:
曹跃(1992—),男,博士,助理研究员,ycao@ecust.edu.cn
基金资助:
Yue CAO1(), Chong YU2, Zhi LI1(), Minglei YANG1()
Received:
2023-07-13
Revised:
2023-09-03
Online:
2023-09-25
Published:
2023-11-20
Contact:
Zhi LI, Minglei YANG
摘要:
加氢裂化装置运行工况众多且切换频繁,而不同稳定的工况间切换必然存在过渡状态,可能会引起装置运行状态波动,甚至引发事故。通常,操作员会基于专家经验判断装置当前处于稳定或过渡状态,分别采取相应的监控和调整策略。然而,人工判断具有个体差异、经验积累周期长等不足,可能导致过渡状态判断不够准确,故提出一种加氢裂化装置多工况切换过渡状态检测方法,首先,结合工业大数据和装置过程机理,针对工业采集数据运用了小波降噪和平滑,再利用相关分析法和主元分析(principal component analysis,PCA)进行数据降维,剥离了相关性强的变量所带来的额外计算成本和信息干扰,将滑动窗拆分并计算移动方差,再与K-means(K均值)聚类相结合,实现了加氢裂化装置的过渡态检测。最后,与经典K-means聚类和层次聚类方法进行对比验证,证明了所提方法具有更好检测能力。
中图分类号:
曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854.
Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit[J]. CIESC Journal, 2023, 74(9): 3841-3854.
方法 | 最佳簇数下的最佳轮廓系数 |
---|---|
heursure | 0.8562 |
rigrsure | 0.8427 |
sqtwolog | 0.8565 |
minimaxi | 0.8550 |
表1 不同阈值方法去噪后的聚类轮廓系数
Table 1 Cluster silhouette coefficient after denoising by different threshold methods
方法 | 最佳簇数下的最佳轮廓系数 |
---|---|
heursure | 0.8562 |
rigrsure | 0.8427 |
sqtwolog | 0.8565 |
minimaxi | 0.8550 |
方法 | 相关性系数 |
---|---|
Gaussian | 0.9269 |
movmean | 0.893 |
表2 不同平滑方法处理信号与原信号相关性对比
Tabel 2 Comparison between processed and original signals by different smoothing methods
方法 | 相关性系数 |
---|---|
Gaussian | 0.9269 |
movmean | 0.893 |
方法 | 过渡状态1 | 过渡状态2 | 过渡状态3 | 过渡状态4 |
---|---|---|---|---|
经典K-means聚类 | 901~1140 | 3375~3383 | 3355~3366 | 6578~6747 |
1189~1226 | 3431~3441 | 3452~3465 | 6938~6956 | |
1889~2013 | 4060~4084 | 3491~3562 | 7217~7193 | |
2641~3354 | 4426~4439 | 3846~3930 | 7172~7268 | |
3466~3490 | 4939~4967 | 3970~4041 | 7280~7422 | |
3563~3845 | 5360~5379 | 4451~4500 | 7513~7533 | |
9306~9798 | 5462~5480 | 4689~4741 | 7624~7730 | |
6171~6370 | 4986~5009 | 7987~8085 | ||
6485~6497 | 5205~5334 | 8461~8486 | ||
6869~6924 | 5548~5559 | 8532~8655 | ||
7544~7582 | 5767~5812 | 8708~8788 | ||
8113~8157 | 5991~6015 | 8885~8918 | ||
9227~9255 | 6090~6142 | |||
9282~9305 | ||||
层次聚类 | 900~1142 | 3376~3382 | 3355~3375 | 6398~6405 |
1190~1228 | 3432~3440 | 3441~3466 | 6534~6546 | |
1887~2015 | 4063~4082 | 3489~3563 | 6571~6751 | |
2639~3354 | 4427~4437 | 3845~4062 | 6937~6953 | |
3467~3488 | 4943~4964 | 4438~4942 | 7175~7195 | |
3564~3844 | 5362~5377 | 4970~5361 | 7214~7415 | |
9307~9799 | 5464~5478 | 5479~6174 | 7517~7534 | |
6175~6367 | 9253~9306 | 7619~7739 | ||
6871~6922 | 7985~8087 | |||
7546~7579 | 8454~8490 | |||
8116~8152 | 8527~8658 | |||
9229~9252 | 8703~8799 | |||
8881~8920 | ||||
方法 本文所提 | 850~1256 | 3310~3591 | 3842~4097 | 6821~6982 |
1845~2040 | 9166~9344 | 4382~4518 | 7140~7201 | |
2613~2673 | 5333~5506 | 7486~8189 | ||
9762~9902 | 6151~6529 |
表3 过渡状态检测结果
Table 3 Detection results of transition states
方法 | 过渡状态1 | 过渡状态2 | 过渡状态3 | 过渡状态4 |
---|---|---|---|---|
经典K-means聚类 | 901~1140 | 3375~3383 | 3355~3366 | 6578~6747 |
1189~1226 | 3431~3441 | 3452~3465 | 6938~6956 | |
1889~2013 | 4060~4084 | 3491~3562 | 7217~7193 | |
2641~3354 | 4426~4439 | 3846~3930 | 7172~7268 | |
3466~3490 | 4939~4967 | 3970~4041 | 7280~7422 | |
3563~3845 | 5360~5379 | 4451~4500 | 7513~7533 | |
9306~9798 | 5462~5480 | 4689~4741 | 7624~7730 | |
6171~6370 | 4986~5009 | 7987~8085 | ||
6485~6497 | 5205~5334 | 8461~8486 | ||
6869~6924 | 5548~5559 | 8532~8655 | ||
7544~7582 | 5767~5812 | 8708~8788 | ||
8113~8157 | 5991~6015 | 8885~8918 | ||
9227~9255 | 6090~6142 | |||
9282~9305 | ||||
层次聚类 | 900~1142 | 3376~3382 | 3355~3375 | 6398~6405 |
1190~1228 | 3432~3440 | 3441~3466 | 6534~6546 | |
1887~2015 | 4063~4082 | 3489~3563 | 6571~6751 | |
2639~3354 | 4427~4437 | 3845~4062 | 6937~6953 | |
3467~3488 | 4943~4964 | 4438~4942 | 7175~7195 | |
3564~3844 | 5362~5377 | 4970~5361 | 7214~7415 | |
9307~9799 | 5464~5478 | 5479~6174 | 7517~7534 | |
6175~6367 | 9253~9306 | 7619~7739 | ||
6871~6922 | 7985~8087 | |||
7546~7579 | 8454~8490 | |||
8116~8152 | 8527~8658 | |||
9229~9252 | 8703~8799 | |||
8881~8920 | ||||
方法 本文所提 | 850~1256 | 3310~3591 | 3842~4097 | 6821~6982 |
1845~2040 | 9166~9344 | 4382~4518 | 7140~7201 | |
2613~2673 | 5333~5506 | 7486~8189 | ||
9762~9902 | 6151~6529 |
1 | 姚立松, 许红香. 加氢裂化装置在压减柴油中的作用分析[J]. 石油炼制与化工, 2023, 54(3): 20-24. |
Yao L S, Xu H X. Function analysis of hydrocracking unit in reducing diesel production[J]. Petroleum Processing and Petrochemicals, 2023, 54(3): 20-24. | |
2 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009. |
Xu C M, Yang Z H. Petroleum Refining Engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009. | |
3 | Cao Y, Jan N M, Huang B, et al. Multimodal process monitoring based on variational Bayesian PCA and Kullback-Leibler divergence between mixture models[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 210: 104230. |
4 | 王啸. 多模态工业过程的过渡模态故障监测方法研究[D]. 沈阳: 东北大学, 2015. |
Wang X. Research on monitoring methods about transition process in multi-modal industrial process[D]. Shenyang: Northeastern University, 2015. | |
5 | Zhang K, Peng K X, Zhao S S, et al. A novel feature-extraction-based process monitoring method for multimode processes with common features and its applications to a rolling process[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6466-6475. |
6 | Jiang Q C, Yan X F. Multimode process monitoring using variational Bayesian inference and canonical correlation analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1814-1824. |
7 | 葛志强. 复杂工况过程统计监测方法研究[D]. 杭州: 浙江大学, 2009. |
Ge Z Q. Statistical process monitoring methods for complex processes[D]. Hangzhou: Zhejiang University, 2009. | |
8 | Huang K K, Wei K, Li F B, et al. LSTM-MPC: a deep learning based predictive control method for multimode process control[J]. IEEE Transactions on Industrial Electronics, 2023, 70(11): 11544-11554. |
9 | Watil A, El Magri A, Lajouad R, et al. Multi-mode control strategy for a stand-alone wind energy conversion system with battery energy storage[J]. Journal of Energy Storage, 2022, 51: 104481. |
10 | 周东华, 王庆林. 基于模型的控制系统故障诊断技术的最新进展[J]. 自动化学报, 1995, 21(2): 244-248. |
Zhou D H, Wang Q L. The latest development of model based fault diagnostics technique of control systems[J]. Acta Automatica Sinica, 1995, 21(2): 244-248. | |
11 | Li W, Zhong X, Shao H D, et al. Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework[J]. Advanced Engineering Informatics, 2022, 52: 101552. |
12 | Kodamana H, Raveendran R, Huang B. Mixtures of probabilistic PCA with common structure latent bases for process monitoring[J]. IEEE Transactions on Control Systems Technology, 2017, 27(2): 838-846. |
13 | Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal, 2008, 54(7): 1811-1829. |
14 | Song B, Shi H B, Ma Y X, et al. Multisubspace principal component analysis with local outlier factor for multimode process monitoring[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16453-16464. |
15 | 周新杰, 王建林, 艾兴聪, 等. 基于IDPC-RVM的多模态间歇过程质量变量在线预测[J]. 化工学报, 2022, 73(7): 3120-3130. |
Zhou X J, Wang J L, Ai X C, et al. IDPC-RVM based online prediction of quality variables for multimode batch processes[J]. CIESC Journal, 2022, 73(7): 3120-3130. | |
16 | 刘伟旻, 王建林, 邱科鹏, 等. 基于DHSC的多模态间歇过程测量数据异常检测方法[J]. 化工学报, 2017, 68(11): 4201-4207. |
Liu W M, Wang J L, Qiu K P, et al. Method for detecting abnormal data in multimode batch processes based on dynamic hypersphere structure change[J]. CIESC Journal, 2017, 68(11): 4201-4207. | |
17 | 顾幸生, 周冰倩. 基于LNS-DEWKECA算法的多模态工业过程故障检测[J]. 控制与决策, 2020, 35(8): 1879-1886. |
Gu X S, Zhou B Q. Multimodal industrial process fault detection based on LNS-DEWKECA[J]. Control and Decision, 2020, 35(8): 1879-1886. | |
18 | Cao Y, Jan N M, Huang B, et al. No-delay multimodal process monitoring using Kullback-Leibler divergence-based statistics in probabilistic mixture models[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(1): 167-178. |
19 | 徐莹, 邓晓刚, 钟娜. 基于ICA混合模型的多工况过程故障诊断方法[J]. 化工学报, 2016, 67(9): 3793-3803. |
Xu Y, Deng X G, Zhong N. A fault diagnosis method for multimode processes based on ICA mixture models[J]. CIESC Journal, 2016, 67(9): 3793-3803. | |
20 | 朱红林, 王帆, 侍洪波, 等. 基于非负矩阵分解的多模态过程故障监测方法[J]. 化工学报, 2016, 67(5): 1973-1981. |
Zhu H L, Wang F, Shi H B, et al. Fault detection method based on non-negative matrix factorization for multimode processes[J]. CIESC Journal, 2016, 67(5): 1973-1981. | |
21 | Fang M Q, Kodamana H, Huang B, et al. A novel approach to process operating mode diagnosis using conditional random fields in the presence of missing data[J]. Computers & Chemical Engineering, 2018, 111: 149-163. |
22 | 李元, 杨东昇, 赵丽颖, 等. 层次变分高斯混合模型与主多项式分析的故障检测策略[J]. 化工学报, 2021, 72(3): 1616-1626. |
Li Y, Yang D S, Zhao L Y, et al. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis[J]. CIESC Journal, 2021, 72(3): 1616-1626. | |
23 | 张淑美, 王福利, 谭帅, 等. 多模态过程的全自动离线模态识别方法[J]. 自动化学报, 2016, 42(1): 60-80. |
Zhang S M, Wang F L, Tan S, et al. A fully automatic offline mode identification method for multi-mode processes[J]. Acta Automatica Sinica, 2016, 42(1): 60-80. | |
24 | Zheng Y, Wang Y, Yan H L, et al. Density peaks clustering-based steady/transition mode identification and monitoring of multimode processes[J]. The Canadian Journal of Chemical Engineering, 2020, 98(10): 2137-2149. |
25 | Bakar Z A, Mohemad R, Ahmad A, et al. A comparative study for outlier detection techniques in data mining[C]//2006 IEEE Conference on Cybernetics and Intelligent Systems. Bangkok, Thailand: IEEE, 2006: 1-6. |
26 | 张淑清, 王力, 李昕. 小波分析在故障监测及诊断中的应用[J]. 传感技术学报, 2001, 14(1): 49-53. |
Zhang S Q, Wang L, Li X. The application of wavelet analysis in fault monitor and diagnosis[J]. Journal of Transcluction Technology, 2001, 14(1): 49-53. | |
27 | 孔国杰, 张培林, 曹建军, 等. 基于提升小波变换的信号降噪及其工程应用[J]. 计算机工程与应用, 2008, 44(10): 234-237. |
Kong G J, Zhang P L, Cao J J, et al. Signal denoising based on lifting wavelet transform and its application[J]. Computer Engineering and Applications, 2008, 44(10): 234-237. | |
28 | Ballabio D. A MATLAB toolbox for principal component analysis and unsupervised exploration of data structure[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149: 1-9. |
29 | 王千, 王成, 冯振元, 等. K-means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7): 21-24. |
Wang Q, Wang C, Feng Z Y, et al. Review of K-means clustering algorithm[J]. Electronic Design Engineering, 2012, 20(7): 21-24. | |
30 | 管彦周, 万生鹏, 程亚楠, 等. 基于移动方差平均算法的相位敏感光时域反射计去噪算法研究[J]. 仪器仪表学报, 2022, 43(10): 233-240. |
Guan Y Z, Wan S P, Cheng Y N, et al. Research on the denoising algorithm of phase sensitive optical time domain reflectometry based on the moving variance average algorithm[J]. Chinese Journal of Scientific Instrument, 2022, 43(10): 233-240. | |
31 | 姜波. 基于MATLAB的小波降噪研究[J]. 电子制作, 2019, 13: 87-88, 99. |
Jiang B. Research on MATLAB based wavelet denoising[J]. Practical Electronics, 2019, 13: 87-88, 99. | |
32 | 李加升, 黄文清, 戴瑜兴. 基于自定义阈值函数的小波去噪算法[J]. 电力系统保护与控制, 2008, 36(19): 21-24. |
Li J S, Huang W Q, Dai Y X. Wavelet-based power quality disturbances de-noising by customized thresholding[J]. Power System Protection and Control, 2008, 36(19): 21-24. | |
33 | Donoho D L. Progress in Wavelet Analysis and WVD: A 10-Minute Tour[M]//Progress in Wavelet Analysis and Applications. Gif-sur-Yvette: Editions Frontières. 1993. |
34 | 李蝉娟. 高维数据降维处理关键技术研究[D]. 成都: 电子科技大学, 2017. |
Li C J. Research on key technologies of dimensionality reduction of high-dimensional data[D]. Chengdu: University of Electronic Science and Technology of China, 2017. | |
35 | 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1): 48-61. |
Sun J G, Liu J, Zhao L Y. Clustering algorithms research[J]. Journal of Software, 2008, 19(1): 48-61. | |
36 | 李先鹏, 吴若男, 王义洋, 等. 融合滑动窗口和MLP-AdaBoost的电力负荷预测[J]. 计算机与数字工程, 2023, 51(1): 66-73. |
Li X P, Wu R N, Wang Y Y, et al. Electric arc furnace load forecasting based on sliding window and MLP-AdaBoost[J]. Computer & Digital Engineering, 2023, 51(1): 66-73. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[4] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[5] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[6] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[7] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[8] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[9] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[10] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[11] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[12] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[13] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[14] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[15] | 顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||