CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4425-4432.doi: 10.11949/0438-1157.20201769

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

Study on thermal conductivity of paraffin-expanded graphite composite phase change materials

Ken LIN(),Xiaoyong XU,Qiang LI,Dinghua HU()   

  1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2020-12-09 Revised:2021-03-16 Online:2021-08-05 Published:2021-08-05
  • Contact: Dinghua HU E-mail:18227052964@163.com;dhhu@njust.edu.cn

Abstract:

It is a common method to improve the thermal conductivity of paraffin-based phase change materials that adding expanded graphite (EG) to paraffin (PA). It is valuable for the application of PA-EG composite to predict its thermal conductivity accurately. Through the analysis of the microstructure characteristics of PA-EG composite phase change materials with EG mass fraction less than 20%, a micro model based on the uniform dispersion of EG fibers in PA was established, the phase change process of uniformly dispersed structural units was numerically simulated, the influence of EG mass fraction and its particle size on the equivalent thermal conductivity of uniform dispersion unit was analyzed, and a prediction model was proposed for the thermal conductivity of the PA-EG phase change materials suitable for different preparation methods. The experimental results of PA-EG composite phase change materials with EG mass fraction less than 20% are in good agreement, with the maximum error of 15.1%.

Key words: paraffin, expanded graphite, composite phase change materials, heat transfer, phase change

CLC Number: 

  • TB 33

Fig.1

Microstructure of PA-EG composite phase change material"

Fig.2

Assumption of PA-EG microscale structure"

Table 1

Materials properties"

MaterialsDensity/(kg/L)

Thermal

conductivity/

(W/(m·K))

Melting

latent

heat/(kJ/kg)

Specific

heat

capacity/

(kJ/(kg·K))

PA0.7460.127189.71.59
EG2.251510.71

Fig.3

Grid independence test of PA-EG unit"

Fig.4

Melting section of PA-EG units"

Fig.5

Calculation results of PA-EG units and their fitting"

Fig.6

Melting rate of pure PA materials with different thermal conductivity"

Fig.7

Deduction of dispersion coefficient α from experimental results of PA-EG composite phase change materials[10,14,17,19,21,35-36]"

Fig.8

Comparison of experimental results and estimated results of PA-EG composite phase change material [15,18]"

1 李响. 一种弹载电子产品储热装置的设计与试验[J]. 电子机械工程, 2018, 34(2): 13-16.
Li X. Design and test of a thermal energy storage device in missile electronics[J]. Electro-Mechanical Engineering, 2018, 34(2): 13-16.
2 Tomizawa Y, Sasaki K, Kuroda A, et al. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices[J]. Applied Thermal Engineering, 2016, 98: 320-329.
3 孙守斌, 姚华, 刘常鹏, 等. 钢铁行业中低温烟气余热相变储热装置特性分析[J]. 储能科学与技术, 2020, 9(3): 730-734.
Sun S B, Yao H, Liu C P, et al. Characteristics analysis of the phase change thermal storage equipment for medium and low temperature flue gas from steel industry[J]. Energy Storage Science and Technology, 2020, 9(3): 730-734.
4 Elefsiniotis A, Becker T, Schmid U. Thermoelectric energy harvesting using phase change materials (PCMs) in high temperature environments in aircraft[J]. Journal of Electronic Materials, 2014, 43(6): 1809-1814.
5 张伟. 基于球形封装的相变储热供暖装置蓄释热性能的研究[D]. 包头: 内蒙古科技大学, 2020.
Zhang W. Research on heat storage and release performance of phase change heat storage and heating device based on spherical package[D]. Baotou, Inner Mongolia University of Science & Technology, 2020.
6 Li Z Y, Fu X Y, Pan D, et al. Research on thermal storage performance of solar phase change thermal storage integrated device[J]. Procedia Engineering, 2017, 205: 1357-1363.
7 孙婉纯, 冯锦新, 张正国, 等. 相变储热技术用于被动式建筑节能的研究进展[J]. 化工进展, 2020, 39(5): 1824-1834.
Sun W C, Feng J X, Zhang Z G, et al. Research progress of phase change heat storage technology for passive energy conservation in buildings[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1824-1834.
8 Wang Z H, Wang F H, Ma Z J, et al. Performance evaluation of a novel frost-free air-source heat pump integrated with phase change materials (PCMs) and dehumidification[J]. Energy Procedia, 2017, 121: 134-141.
9 周慧琳. 矩形单元内石蜡熔化/凝固过程传热特性研究及结构优化[D]. 济南: 山东大学, 2020.
Zhou H L. Melting and solidification heat transfer characteristics of paraffin in rectangular unit and structure optimization[D]. Jinan: Shandong University, 2020.
10 刘正浩, 张小松, 王昌领, 等. 石蜡与石蜡/膨胀石墨熔化性能的实验研究[J]. 化工学报, 2020, 71(7): 3362-3371.
Liu Z H, Zhang X S, Wang C L, et al. Experimental study on melting performance of paraffin and paraffin/expanded graphite[J]. CIESC Journal, 2020, 71(7): 3362-3371.
11 徐祥贵, 王丽琼, 王君雷, 等. 泡沫金属复合PCM微结构传热储热过程模拟[J]. 化工学报, 2021, 72(2): 956-964.
Xu X G, Wang L Q, Wang J L, et al. Simulation on heat transfer and thermal storage processes of foamed metal composite PCM microstructure[J]. CIESC Journal, 2021, 72(2): 956-964.
12 张涛, 余建祖, 高红霞. TPS法测定泡沫铜/石蜡复合相变材料热物性[J]. 太阳能学报, 2010, 31(5): 604-609.
Zhang T, Yu J Z, Gao H X. Measurement of thermal parameters of copper foam/paraffins composite pcm using transient plane source(tps) method[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 604-609.
13 Keshteli A N, Sheikholeslami M. Influence of Al2O3 nanoparticle and Y-shaped fins on melting and solidification of paraffin[J]. Journal of Molecular Liquids, 2020, 314: 113798.
14 Kenisarin M, Mah kamov K, Kahwash F, et al. Enhancing thermal conductivity of paraffin wax 53—57℃ using expanded graphite[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110026.
15 王文健. 基于复合相变材料的锂离子电池热管理系统传热强化研究[D]. 徐州: 中国矿业大学, 2018.
Wang W J. Investigation on the heat transfer enhancement of lithium ion battery thermal management system based on composite phase change material[D]. Xuzhou: China University of Mining and Technology, 2018.
16 施曙东. 膨胀石墨微观结构调控及其与石蜡复合相变储能材料研究[J]. 功能材料, 2018, 49(1): 1064-1070.
Shi S D. Microstructure adjustment of expanded graphite and its influence on thermal performance of composite paraffin/expanded graphite phase-change material[J]. Journal of Functional Materials, 2018, 49(1): 1064-1070.
17 Hua J S, Yuan C, Zhao X, et al. Structure and thermal properties of expanded graphite/paraffin composite phase change material[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(1): 86-93.
18 Ren X M, Shen H L, Yang Y, et al. Study on the properties of a novel shape-stable epoxy resin sealed expanded graphite/paraffin composite PCM and its application in buildings[J]. Phase Transitions, 2019, 92(6): 581-594.
19 李亚鹏. 膨胀石墨基体影响石蜡储放热性能的实验研究[D]. 济南: 山东大学, 2020.
Li Y P. Experimental study on the effect of expanded graphite on the storage and release performance of paraffin[D]. Jinan: Shandong University, 2020.
20 Nofal M, Al-Hallaj S, Pan Y Y. Experimental investigation of phase change materials fabricated using selective laser sintering additive manufacturing[J]. Journal of Manufacturing Processes, 2019, 44: 91-101.
21 陈正浩. 石蜡/月桂酸: 膨胀石墨复合相变材料的制备及性能研究[D]. 包头: 内蒙古科技大学, 2020.
Chen Z H. Preparation and properties of paraffin-expanded graphite and lauric acid-expanded graphite composite phase change materials[D]. Baotou: Inner Mongolia University of Science & Technology, 2020.
22 Wang X L, Li B, Qu Z G, et al. Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119853.
23 徐众, 万书权, 邓建梅, 等. 石蜡/不同粒径膨胀石墨复合相变材料的制备及性能研究[J]. 化工新型材料, 2017, 45(5): 57-60.
Xu Z, Wan S Q, Deng J M, et al. Preparation and performance study on phase change material composite of paraffin/different particle sized expanded graphite[J]. New Chemical Materials, 2017, 45(5): 57-60.
24 Alzoubi M F, Khateeb S, Al-Hallaj S. Modeling of compression curves of phase change graphite composites using Maxwell and Kelvin models[J]. Journal of Composite Materials, 2016, 50(8): 1123-1135.
25 孙文鸽, 韩磊, 吴志根. 膨胀石墨/石蜡相变复合材料有效热导率的数值计算[J]. 复合材料学报, 2015, 32(6): 1596-1601.
Sun W G, Han L, Wu Z G. Numerical calculation of effective thermal conductivity coefficients of expanded graphite/paraffin phase change composites[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1596-1601.
26 李泽群, 杨建国. 石墨/石蜡相变材料在电池热管理中的应用[J]. 电源技术, 2020, 44(9): 1287-1292.
Li Z Q, Yang J G. Application of graphite/paraffin phase change materials in battery thermal management[J]. Chinese Journal of Power Sources, 2020, 44(9): 1287-1292.
27 Abdelrazeq H, Sobolčiak P, Al-Ali Al-Maadeed M, et al. Recycled polyethylene/paraffin wax/expanded graphite based heat absorbers for thermal energy storage: an artificial aging study[J]. Molecules, 2019, 24(7): 1217.
28 高志勇, 张晚佳. 膨胀石墨的制备方法及应用研究进展[J]. 贵州大学学报(自然科学版), 2018, 35(6): 13-19.
Gao Z Y, Zhang W J. Preparation and application of expanded graphite: a review[J]. Journal of Guizhou University (Natural Sciences), 2018, 35(6): 13-19.
29 Zhao Y Q, Jin L, Zou B Y, et al. Expanded graphite - Paraffin composite phase change materials: effect of particle size on the composite structure and properties[J]. Applied Thermal Engineering, 2020, 171: 115015.
30 姜贵文, 黄菊花. 膨胀石墨/石蜡复合材料的制备及热管理性能[J]. 材料工程, 2017, 45(7): 41-47.
Jiang G W, Huang J H. Preparation and thermal management of expanded graphite/paraffin composite for Li-ion battery[J]. Journal of Materials Engineering, 2017, 45(7): 41-47.
31 华建社, 张娇, 张焱, 等. 膨胀石墨/石蜡复合相变蓄热材料的热性能及定形性研究[J]. 材料导报, 2016, 30(12): 61-64, 75.
Hua J S, Zhang J, Zhang Y, et al. Study on thermal properties and shape-stabilizing of expanded graphite/paraffin composite phase change material[J]. Materials Review, 2016, 30(12): 61-64, 75.
32 李彦, 祗明亮, 尤国有, 等. 化学氧化法制备膨胀石墨的研究进展[J]. 应用化工, 2020, 49(11): 2864-2870.
Li Y, Di M L, You G Y, et al. Advances in the preparation of expanded graphite by chemical oxidation[J]. Applied Chemical Industry, 2020, 49(11): 2864-2870.
33 周业涛, 关振群, 顾元宪. 求解相变传热问题的等效热容法[J]. 化工学报, 2004, 55(9): 1428-1433.
Zhou Y T, Guan Z Q, Gu Y X. Equivalent heat capacity method for solution of heat transfer with phase change[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(9): 1428-1433.
34 Wang Q Q, Zhou D, Chen Y M, et al. Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites[J]. Renewable Energy, 2020, 147: 1131-1138.
35 黄睿, 方晓明, 凌子夜, 等. 高性能三水醋酸钠-尿素-膨胀石墨混合相变材料的制备及其在电地暖中的应用性能[J]. 化工学报, 2020, 71(6): 2713-2723.
Huang R, Fang X M, Ling Z Y, et al. Preparation of high-performance sodium acetate trihydrate-urea-expanded graphite mixed phase change material and its application performance in electric floor heating[J]. CIESC Journal, 2020, 71(6): 2713-2723.
36 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3553-3564.
Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70(9): 3553-3564.
[1] LI Fan, LU Gaofeng, MA Guangbai, ZHAI Xiaoqiang, YANG Shunfa. Numerical simulation and performance analysis of heat transfer enhancement in tube by longitudinal vortex [J]. CIESC Journal, 2021, 72(S1): 120-126.
[2] MA Qiuming, NIE Lei, PAN Quanwen, SHAN He, CAO Weiliang, WANG Qiang, WANG Ruzhu. Heat exchange performance of a battery chiller for electric vehicles [J]. CIESC Journal, 2021, 72(S1): 170-177.
[3] KUANG Yiwu, SUN Lijie, WANG Wen, ZHUAN Rui, ZHANG Liang. Numerical investigation of hydrogen flow boiling based on two-fluid model [J]. CIESC Journal, 2021, 72(S1): 184-193.
[4] SHAN He, MA Qiuming, PAN Quanwen, CAO Weiliang, WANG Qiang, WANG Ruzhu. Simulation of heat transfer performance in the coolant side of a novel chiller for electric vehicles thermal management system [J]. CIESC Journal, 2021, 72(S1): 194-202.
[5] XIE Yao, LI Jianrui, HU Haitao. Simulation of supercritical methane flow and heat transfer characteristics in printed circuit heat exchanger [J]. CIESC Journal, 2021, 72(S1): 203-209.
[6] ZHAO Haifeng, LI Hong, LI Xingang, GAO Xin. Numerical simulation of microwave distillation reactor with multi-physical field coupling: heating and boiling processes [J]. CIESC Journal, 2021, 72(S1): 266-277.
[7] LIN Shiquan, ZHAO Yaxin, LYU Zhongyuan, LAI Zhancheng, HU Haitao. Effect of hydrophilicity and hydrophobicity on pool boiling heat transfer characteristics on metal foam [J]. CIESC Journal, 2021, 72(S1): 295-301.
[8] WANG Lingyue, ZHU Jinrong, WANG Congle, LYU Hui, CHENG Chunfu, ZHANG Jinye. Influence of diverter in cylinder array on its natural convection heat transfer [J]. CIESC Journal, 2021, 72(S1): 310-317.
[9] GU Xiao, ZOU Huiming, HAN Xinxin, TANG Mingsheng, TIAN Changqing. Heating performance of vapor injection heat pump based on waste heat recovery [J]. CIESC Journal, 2021, 72(S1): 326-335.
[10] WANG Fei, WANG Jianmin, SHAO Shuangquan. Analysis multi-stage heat transfer process of data center cooling system from the temperature difference [J]. CIESC Journal, 2021, 72(S1): 348-355.
[11] ZHAO Junzhe, LIU Fangchen, LI Yuanlu, DU Wenjing. Flow and heat transfer characteristics of triangular cylinder in a channel with low Reynolds number [J]. CIESC Journal, 2021, 72(S1): 382-389.
[12] ZHANG Jingwei, LIU Yongyang, LIU Dong, SHAO Guodong, LI Yuanlu, LIU Fangchen, DU Wenjing. Condensation performance of low temperature boiler flue gas containing SO2 on vertical wall [J]. CIESC Journal, 2021, 72(S1): 475-481.
[13] HE Qifan, WU Minqiang, LI Tingxian, WANG Ruzhu. Preparation and thermophysical properties of octadecane/ OBC/ EG composite shaped phase change material [J]. CIESC Journal, 2021, 72(S1): 539-545.
[14] JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2021, 72(S1): 98-105.
[15] Yanhong WANG, Yingnan LU, Sufen LI, Ming DONG. Numerical study on heat transfer of supercritical-pressure RP-3 aviation kerosene in U-turn circular tubes [J]. CIESC Journal, 2021, 72(9): 4639-4648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Huaiyu,WU Yuan,XU Chenghai. Pressure Fluctuation in the Submerged Circulative Impinging Stream Reactor[J]. , 2006, 14(4): 428 -434 .
[2] WANG Weiwei. Voidage measurement of gas-oil two-phase flow[J]. , 2007, 15(3): 339 -344 .
[3] CHEN Jingyu, ZHANG Lei, CHEN Jinchun, CHEN Guoqiang. Biosynthesis and characterization of polyhydroxyalkanoate copolyesters in Ralstonia
eutropha
PHB4 harboring a low-substrate-specificity PHA synthase PhaC2Ps from Pseudomonas
stutzeri
1317
[J]. , 2007, 15(3): 391 -396 .
[4] GUO Xiangyun, F.J.Keil. Monte Carlo Simulation of First-Order Diffusion-Limited Reaction within Three-Dimensional
Porous Pellets
[J]. , 2003, 11(4): 472 -476 .
[5] YOU Xueyi, H.J.Bart. Comparison of the Reynolds-averaged Turbulence Models on Single Phase Flow Simulation in
Agitated Extraction Columns
[J]. , 2003, 11(3): 362 -366 .
[6] ZHU Yu, WANG Jun, LU Xiaohua, WANG Yanru, SHI Jun. Molecular Dynamics Simulation of Rutile TiO2 and Potassium Hexatitanate (K2Ti6O13) Crystal[J]. , 2003, 11(2): 170 -174 .
[7] XIE Fangyou, ZHU Mingqiao, LIU Jianqing, HE Chaohong. Extraction of Caprolactam from Aqueous Ammonium Sulfate Solution in Pulsed Packed Column
Using 250Y Mellapak Packings
[J]. , 2002, 10(6): 677 -680 .
[8] LAN Renshui, GAO Changbao, WANG Shuying. Study on Jet Coflow Packing Tray[J]. , 2002, 10(5): 535 -538 .
[9] ZHOU Dingwei, LIU Dengying. Boiling Heat Transfer in an Acoustic Cavitation Field[J]. , 2002, 10(5): 625 -629 .
[10] WANG Zhiliang, DIAO Jie, WANG Jinfu, JIN Yong. Study on Synergy Effect in Dimethyl Ether Synthesis from Syngas[J]. , 2001, 9(4): 412 -416 .