CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3309-3319.DOI: 10.11949/0438-1157.20230472
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Rui HONG(), Baoqiang YUAN, Wenjing DU()
Received:
2023-05-12
Revised:
2023-08-20
Online:
2023-10-18
Published:
2023-08-25
Contact:
Wenjing DU
通讯作者:
杜文静
作者简介:
洪瑞(2000—),女,硕士研究生,hrui@mail.sdu.edu.cn
CLC Number:
Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube[J]. CIESC Journal, 2023, 74(8): 3309-3319.
洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319.
常数 | Abe-Kondoh-Nagano (1994) (AKN模型) | Modified model[ (VAKN模型) |
---|---|---|
Cμ | 0.09 | 0.09 |
Cε1 | 1.5 | 1.5 |
Cε2 | 1.9 | 1.9 |
σk | 1.4 | 1.4 |
σε | 1.4 | 1.4 |
Ct1 | — | 1 |
C t2 | — | 0.4 |
C t3 | — | -1.5 |
Table 1 Constants in the turbulence model
常数 | Abe-Kondoh-Nagano (1994) (AKN模型) | Modified model[ (VAKN模型) |
---|---|---|
Cμ | 0.09 | 0.09 |
Cε1 | 1.5 | 1.5 |
Cε2 | 1.9 | 1.9 |
σk | 1.4 | 1.4 |
σε | 1.4 | 1.4 |
Ct1 | — | 1 |
C t2 | — | 0.4 |
C t3 | — | -1.5 |
工况 | 流动传热条件 | 对流类型 |
---|---|---|
Case A | Case 1(基本工况) | 混合对流 |
Case B | 密度变化,冻结其他物性 | 混合对流 |
Case C | 黏度变化,冻结其他物性 | 强迫对流 |
Case D | 比热容变化,冻结其他物性 | 强迫对流 |
Case E | 密度冻结 | 强迫对流 |
Case F | 不受重力 | 强迫对流 |
Case G | 恒壁温 | 强迫对流 |
Case H | 流动方向与Case A相反 | 混合对流 |
Table 2 Simulation case setting
工况 | 流动传热条件 | 对流类型 |
---|---|---|
Case A | Case 1(基本工况) | 混合对流 |
Case B | 密度变化,冻结其他物性 | 混合对流 |
Case C | 黏度变化,冻结其他物性 | 强迫对流 |
Case D | 比热容变化,冻结其他物性 | 强迫对流 |
Case E | 密度冻结 | 强迫对流 |
Case F | 不受重力 | 强迫对流 |
Case G | 恒壁温 | 强迫对流 |
Case H | 流动方向与Case A相反 | 混合对流 |
1 | Liang Y C, Sun Z L, Dong M R, et al. Investigation of a refrigeration system based on combined supercritical CO2 power and transcritical CO2 refrigeration cycles by waste heat recovery of engine[J]. International Journal of Refrigeration, 2020, 118: 470-482. |
2 | Duschek W, Kleinrahm R, Wagner W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide ( Ⅱ ) : Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexistence curve[J]. The Journal of Chemical Thermodynamics, 1990, 22(9): 841-864. |
3 | Liu Y P, Wang Y, Huang D G. Supercritical CO2 Brayton cycle: a state-of-the-art review[J]. Energy, 2019, 189: 115900. |
4 | 黄彦平, 王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程, 2012, 33(3): 21-27. |
Huang Y P, Wang J F. Applications of supercritical carbon dioxide in nuclear reactor system[J]. Nuclear Power Engineering, 2012, 33(3): 21-27. | |
5 | Duffey R B, Pioro I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. |
6 | Fan Y H, Tang G H. Numerical investigation on heat transfer of supercritical carbon dioxide in a vertical tube under circumferentially non-uniform heating[J]. Applied Thermal Engineering, 2018, 138: 354-364. |
7 | 张良, 朱兵国, 吴新明, 等. 超临界二氧化碳在垂直光管内的传热特性[J]. 中国电机工程学报, 2019, 39(15): 4487-4497. |
Zhang L, Zhu B G, Wu X M, et al. Heat transfer characteristics of supercritical pressure CO2 in a vertical smooth tube[J]. Proceedings of the CSEE, 2019, 39(15): 4487-4497. | |
8 | Zhang Q, Li H X, Lei X L, et al. Study on identification method of heat transfer deterioration of supercritical fluids in vertically heated tubes[J]. International Journal of Heat and Mass Transfer, 2018, 127: 674-686. |
9 | He J D, Yan J J, Wang W, et al. Effects of buoyancy and thermophysical property variations on the flow of supercritical carbon dioxide[J]. International Journal of Heat and Fluid Flow, 2020, 86: 108697. |
10 | 汪森林, 李照志, 邵应娟, 等. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082. |
Wang S L, Li Z Z, Shao Y J, et al. Numerical simulation on heat transfer deterioration of supercritical carbon dioxide in vertical tube[J]. CIESC Journal, 2022, 73(3): 1072-1082. | |
11 | Holman J P, Rea S N, Howard C E. Forced convection heat transfer to Freon 12 near the critical state in a vertical annulus[J]. International Journal of Heat and Mass Transfer, 1965, 8(8): 1095-1102. |
12 | Zhu B G, Xu J L, Wu X M, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 136: 254-266. |
13 | Zhu B G, Xu J L, Yan C S, et al. The general supercritical heat transfer correlation for vertical up-flow tubes: K number correlation[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119080. |
14 | Zhang H S, Zhu X J, Zhu B G, et al. Effects of buoyancy and acceleration on heat transfer of supercritical CO2 flowing in tubes[J]. Acta Physica Sinica, 2020, 69(6): 064401. |
15 | Zhang H S, Xu J L, Wang Q Y, et al. Multiple wall temperature peaks during forced convective heat transfer of supercritical carbon dioxide in tubes[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121171. |
16 | Hall W B, Jackson J D, Watson A. Mixed forced and free convective heat transfer to supercritical pressure fluids flowing in vertical pipes[J]. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 1967, 182(9): 10-22. |
17 | Bae J H, Yoo J Y, Choi H. Direct numerical simulation of turbulent supercritical flows with heat transfer[J]. Physics of Fluids, 2005, 17(10): 105104. |
18 | Licht J, Anderson M, Corradini M. Heat transfer and fluid flow characteristics in supercritical pressure water[J]. Journal of Heat Transfer, 2009, 131(7): 072502. |
19 | Kumar N, Basu D N. Role of buoyancy on the thermalhydraulic behavior of supercritical carbon dioxide flow through horizontal heated minichannel[J]. International Journal of Thermal Sciences, 2021, 168: 107051. |
20 | Lei Y C, Xu B, Chen Z Q. Experimental investigation on cooling heat transfer and buoyancy effect of supercritical carbon dioxide in horizontal and vertical micro-channels[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121792. |
21 | Zhu X J, Zhang R Z, Du X, et al. Experimental study on heat transfer deterioration of supercritical CO2 in a round tube: a boundary assessment[J]. International Communications in Heat and Mass Transfer, 2022, 134: 106055. |
22 | Jiang P X, Wang Z C, Xu R N. A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model[J]. International Journal of Heat and Mass Transfer, 2018, 127: 257-267. |
23 | 张宇, 姜培学, 石润富, 等. 竖直圆管中超临界压力CO2在低Re数下对流换热研究[J]. 工程热物理学报, 2008, 29(1): 118-120. |
Zhang Y, Jiang P X, Shi R F, et al. Convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers[J]. Journal of Engineering Thermophysics, 2008, 29(1): 118-120. | |
24 | Fewster J. Mixed forced and free convective heat transfer to supercritical pressure fluids flowing in vertical pipes[D]. Manchester: University of Manchester, 1976. |
25 | Xie J Z, Liu D C, Yan H B, et al. A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119233. |
26 | Pidaparti S R, McFarland J A, Mikhaeil M M, et al. Investigation of buoyancy effects on heat transfer characteristics of supercritical carbon dioxide in heating mode[J]. Journal of Nuclear Engineering and Radiation Science, 2015, 1(3): 031001. |
27 | Kurganov V A, Zeigarnik Y A, Maslakova I V. Heat transfer and hydraulic resistance of supercritical-pressure coolants ( Ⅰ ) : Specifics of thermophysical properties of supercritical pressure fluids and turbulent heat transfer under heating conditions in round tubes (state of the art)[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12): 3061-3075. |
28 | Lei X L, Peng R F, Guo Z M, et al. Experimental comparison of the heat transfer of carbon dioxide under subcritical and supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119562. |
29 | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
30 | Jackson J D. Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration[J]. Applied Thermal Engineering, 2017, 124: 1481-1491. |
31 | Kim D E, Kim M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
32 | Bae Y Y. Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel[J]. Nuclear Engineering and Design, 2011, 241(8): 3164-3177. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 617
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 259
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||