1 |
Ge Z Q , Song Z H , Gao F R . Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562.
|
2 |
Yang C M , Hou J . Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine[J]. Neurocomputing, 2016, 190(2): 117-123.
|
3 |
高学金, 黄梦丹, 王普, 等 . 基于多约束DTW的MPCA间歇过程监测方法[J]. 北京工业大学学报, 2018, 44(3): 393-400.
|
|
Gao X J , Huang M D , Wang P , et al . Batch process monitoring method based on multi-way principal component analysis and limited-DTW[J]. Journal of Beijing University of Technology, 2018, 44(3): 393-400.
|
4 |
Yin S , Ding S X , Abandan Sari A H , et al . Data-driven monitoring for stochastic systems and its application on batch process[J]. International Journal of Systems Science, 2013, 44(7): 1366-1376.
|
5 |
Liu Y Q , Pan Y P , Wang Q L , et al . Statistical process monitoring with integration of data projection and one-class classification[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149(8): 1-11.
|
6 |
Naes T , Tomic O . Multi-block regression based on combinations of orthogonalisation PLS regression and canonical correlation analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 124(1): 32-42.
|
7 |
Zhao X Q , Wang T . Tensor dynamic neighborhood preserving embedding algorithm for fault diagnosis of batch process[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 162(1): 94-103.
|
8 |
Cai B P , Zhao Y B , Liu H L , et al . A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5590-5600.
|
9 |
Deng X G , Tian X M . Sparse kernel locality preserving projection and its application in nonlinear process fault detection[J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 163-170.
|
10 |
Song Y , Jiang Q C , Yan X F . Fault diagnosis and process monitoring using a statistical pattern framework based on a self-organizing map[J]. Journal of Central South University, 2015, 22(2): 601-609.
|
11 |
Tong C , Lan T , Shi X . Ensemble modified independent component analysis for enhanced non-Gaussian process monitoring[J]. Control Engineering Practice, 2017, 58(9): 34-41.
|
12 |
Erdem O , Ceyhan E , Varli Y . A new correlation coefficient for bivariate time-series data[J]. Physica A: Statistical Mechanics and Its Applications 2011, 414(10): 274-284.
|
13 |
Kano M , Tanaka S , Hasebe S , et al . Monitoring independent components for fault detection[J]. AIChE Journal, 2010, 49(4): 969-976.
|
14 |
Huang J P , Yan X F . Relevant and independent multi-block approach for plant-wide process and quality-related monitoring based on KPCA and SVDD[J]. ISA Transactions, 2018, 73(6): 257-267.
|
15 |
王振雷, 江伟, 王昕 . 基于多块MICA-PCA的全流程过程监控方法[J]. 控制与决策, 2018, 33(2): 269-274.
|
|
Wang Z L , Jiang W , Wang X . Plant-wide process monitoring based on multiblock MICA-PCA[J]. Control and Decision, 2018, 33(2): 269-274.
|
16 |
Lee J M , Yoo C K , Lee I B . On-line batch process monitoring using a consecutively updated multiway principal component analysis model[J]. Computers & Chemical Engineering, 2003, 27(12): 1903-1912.
|
17 |
Rato T J , Blue J , Pinaton J , et al . Translation-invariant multiscale energy-based PCA for monitoring batch processes in semiconductor manufacturing[J]. IEEE Transactions on Automation Science & Engineering, 2017, 14(2): 894-904.
|
18 |
赵忠盖, 刘飞.基于稀疏核主元分析的在线非线性过程监控[J]. 化工学报, 2008, 59(7): 1773-1777.
|
|
Zhao Z , Liu F . On-line nonlinear process monitoring based on sparse kennel principal component analysis[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(7): 1773-1777.
|
19 |
王磊, 邓晓刚, 徐莹, 等 . 基于变量子域PCA的故障检测方法[J]. 化工学报, 2016, 67(10): 4300-4308.
|
|
Wang L , Deng X G , Xu Y , et al . Fault detection method based on variable sub-region PCA[J]. CIESC Journal, 2016, 67(10): 4300-4308.
|
20 |
汤健, 贾美英, 刘卓 . 基于偏最小二乘算法的高维谱数据特征选择[J]. 控制工程, 2015, 22(6): 1127-1130.
|
|
Tang J , Jia M Y , Liu Z , et al . Feature selection approach of high dimension spectral data based on partial least squares algorithm[J]. Control Engineering of China, 2015, 22(6): 1127-1130.
|
21 |
Cao Y P , Hu Y P , Deng X G , et al . Quality-relevant batch process fault detection using a multiway multi-subspace CVA method[J]. IEEE Access, 2017, 5(10): 2169-3536.
|
22 |
Juricek B C , Seborg D E , Larimore W E . Fault detection using canonical variate analysis[J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 458-474.
|
23 |
Liu Y , Wang F , Chang Y , et al . Multiple hypotheses testing-based operating optimality assessment and nonoptimal cause identification for multiphase uneven-length batch process[J]. Industrial & Engineering Chemistry Research, 2016, 55(2): 6133-6144.
|
24 |
Spooner M , Kold D , Kulahci M . Selecting local constraint for alignment of batch process data with dynamic time warping[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 167(8): 161-170.
|
25 |
Lu B , Xu S , Stuber J , et al . Constrained selective dynamic time warping of trajectories in three dimensional batch data[J]. Chemommetrics and Intelligent Laboratory Systems. 2016, 159(10): 138-150.
|
26 |
Gollmer K , Posten C . Detection of distorted pattern using dynamic time warping algorithm and application for supervision of bioprocess[J]. IFAC Proceedings Volumes, 1995, 28(12): 538-549.
|
27 |
高翔, 王纲, 马纪虎 . 基于可变多元统计模型的故障诊断方法[J]. 上海海事大学学报, 2001, 22(3): 51-55.
|
|
Gao X , Wang G , Ma J H . The approach of fault diagnosis method based on variable multivariate statistical model[J]. Journal of Shanghai Maritime University, 2001, 22(3): 51-55.
|
28 |
李元, 王纲, 曹锐 . 基于MPCA与DTW的间歇反应过程的性能监视及故障诊断[J]. 沈阳化工大学学报, 2003, 17(4): 285-289.
|
|
Li Y , Wang G , Cao R . Performance monitoring and fault diagnosis based on the intermittent reaction process of MPCA and DTW [J]. Journal of Shenyang Chemical University, 2003, 17(4): 285-289.
|
29 |
肖应旺, 徐保国 . 基于改进的MPCA与DTW方法及其在批过程故障诊断中的应用[J]. 计算机与应用化学, 2005, 22(5): 344-348.
|
|
Xiao Y W , Xu B G . Batch process monitoring and fault detection based on an improved MPCA and DTW[J]. Computers and Applied Chemistry, 2005, 22(5): 344-348.
|
30 |
Birol G , Ündey C , Parulekar S J , et al . A morphologically structured model for penicillin production[J]. Biotechnology and Bioengineering, 2002, 77(5): 538-552.
|
31 |
刘毅, 王海清 . Pensim仿真平台在青霉素发酵过程的应用研究[J]. 系统仿真学报, 2006, 18(12): 3524-3527.
|
|
Liu Y , Wang H Q . Pensim simulation platform in the application of penicillin fermentation process research [J]. Journal of System Simulation, 2006, 18(12): 3524-3527.
|