1 |
Gernaey K V , van Loosdrecht M C M , Henze M , et al . Activated sludge wastewater treatment plant modelling and simulation: state of the art[J]. Environmental Modelling and Software, 2004, 19(9): 763-783.
|
2 |
Henze M , Grady C P L , Gujer W , et al . Activated sludge model No. 1: IAWPRC scientific and technical reports No.1[R]. London: IAWPRC, 1987.
|
3 |
Henze M , Gujer W , Mino T , et al . Activated Sludge Models ASM1, ASM2, ASM2d and ASM3[M]. London: IWA Publishing, 2000.
|
4 |
Khataee A R , Kasiri M B . Modeling of biological water and wastewater treatment processes using artificial neural networks[J]. Clean-Soil, Air, Water, 2011, 39(8): 742-749.
|
5 |
Güçlü D , Ş Dursun . Artificial neural network modelling of a large-scale wastewater treatment plant operation[J]. Bioprocess and Biosystems Engineering, 2010, 33(9): 1051-1058.
|
6 |
Sainz G I , Fuente M J , Vega P . Recurrent neuro-fuzzy modeling of a wastewater treatment plant[J]. European Journal of Control, 2004, 10(1): 84-96.
|
7 |
Belanche L A , Valdés J J , Comas J , et al . Towards a model of input-output behaviour of wastewater treatment plants using soft computing techniques[J]. Environmental Modelling and Software, 1999, 14(5): 409-419.
|
8 |
Hamed M M , Khalafallah M G , Hassanien E A . Prediction of wastewater treatment plant performance using artificial neural networks[J]. Environmental Modelling and Software, 2004, 19(10): 919-928.
|
9 |
Raduly B , Gernaey K V , Capodaglio A G , et al . Artificial neural networks for rapid WWTP performance evaluation: methodology and case study[J]. Environmental Modelling and Software, 2007, 22(8): 1208-1216.
|
10 |
Moral H , Aksoy A , Gokcay C F . Modeling of the activated sludge process by using artificial neural networks with automated architecture screening[J]. Computers and Chemical Engineering, 2008, 32(10): 2471-2478.
|
11 |
Mjalli F S , Al-Asheh S , Alfadala H E . Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance[J]. Journal of Environmental Management, 2007, 83(3): 329-338.
|
12 |
Lee J W , Suh C , Hong Y S T , et al . Sequential modelling of a full-scale wastewater treatment plant using an artificial neural network[J]. Bioprocess and Biosystems Engineering, 2011, 34(8): 963-973.
|
13 |
Bagheri M , Mirbagheri S A , Ehteshami M , et al . Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks[J]. Process Safety and Environmental Protection, 2015, 93: 111-123.
|
14 |
Liu Q , Ibeas A , Vilanova R . Neural network identification of wastewater treatment plants[C]//Proceedings of 23rd Mediterranean Conference on Control and Automation. IEEE, 2015: 840-846.
|
15 |
Škrjanc I . Confidence interval of fuzzy models: an example using a waste-water treatment plant[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96(2): 182-187.
|
16 |
Ni W D , Wang K , Chen T , et al . GPR model with signal preprocessing and bias update for dynamic processes modeling[J]. Control Engineering Practice, 2012, 20(12): 1281-1292.
|
17 |
Liu Y Q , Huang D P , Li Y . Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor[J]. Industrial and Engineering Chemistry, 2012, 51(8): 3356-3367.
|
18 |
Liu Y Q , Guo J H , Wang Q L , et al . Prediction of filamentous sludge bulking using a state-based Gaussian processes regression model[J]. Scientific Reports, 2016, 6: 31303.
|
19 |
宋留, 杨冲, 张辉, 等 . 造纸废水处理过程的高斯过程回归软测量建模[J]. 中国环境科学, 2018, 38(7): 2564-2571.
|
|
Song L , Yang C , Zhang H , et al . Soft-sensor modeling of papermaking wastewater treatment process based on Gaussian process[J]. China Environmental Science, 2018, 38(7): 2564-2571.
|
20 |
柴伟, 纪镐南 . 污水处理出水BOD区间预测建模[J]. 哈尔滨工业大学学报, 2018, 50(2): 71-76.
|
|
Chai W , Ji H N . Interval predictor models for effluent BOD of wastewater treatment[J]. Journal of Harbin Institute of Technology, 2018, 50(2): 71-76.
|
21 |
Chai W , Guo L H , Li X M , et al . Interval prediction of effluent TP for wastewater treatment plants[C]//Proceedings of 2019 IEEE Conference on Control Technology and Applications. IEEE, 2019: 511-516.
|
22 |
Alex J , Beteau J F , Copp J B , et al . Benchmark for evaluating control strategies in wastewater treatment plants[C]//Proceedings of 1999 European Control Conference. IEEE, 1999: 3746-3751.
|
23 |
Jeppsson U , Pons M N . The COST benchmark simulation model-current state and future perspective[J]. Control Engineering Practice, 2004, 12(3): 299-304.
|
24 |
Mirbagheri S A , Bagheri M , Boudaghpour S , et al . Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks[J]. Journal of Environmental Health Science and Engineering, 2015, 13: 17.
|
25 |
Bezdek J C . Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
|
26 |
Milanese M , Vicino A . Optimal estimation theory for dynamic systems with set membership uncertainty: an overview[J]. Automatica, 1991, 27(6): 997-1009.
|
27 |
Chai W , Sun X F , Qiao J F . Improved zonotopic method to set membership identification for systems with time-varying parameters[J]. IET Control Theory and Applications, 2011, 5(17): 2039-2044.
|
28 |
Chai W , Sun X F , Qiao J F . Set membership state estimation with improved zonotopic description of feasible solution set[J]. International Journal of Robust and Nonlinear Control, 2013, 23(14): 1642-1654.
|
29 |
Fogel E , Huang Y F . On the value of information in system identification–bounded noise case[J]. Automatica, 1982, 18(2): 229-238.
|
30 |
Belforte G , Bona B . An improved parameter identification algorithm for signals with unknown but bounded errors[C]//Proceedings of the 7th IFAC/IFORS Symposium on Identification and System Parameter Estimation. IFAC, 1985: 1507-1511.
|
31 |
Chai W , Qiao J F . Passive robust fault detection using RBF neural modeling based on set membership identification[J]. Engineering Applications of Artificial Intelligence (a Journal of IFAC), 2014, 28: 1-12.
|