1 |
朱顺妮, 刘芬, 樊均辉, 等.微藻生物能源研究现状及展望[J]. 新能源进展, 2018, (6): 467-474
|
|
ZhuS N, LiuF, FanJ H, et al. Research progress and prospect of microalgae bioenergy[J]. Advances in New and Renewable Energy, 2018, (6): 467-474.
|
2 |
MataT M, MartinsA A, CaetanoN S. Microalgae for biodiesel production and other applications: a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 217-232.
|
3 |
GonçalvesA L, PiresJ C M, SimõesM. Green fuel production: processes applied to microalgae[J]. Environmental Chemistry Letters, 2013, 11(4): 315-324.
|
4 |
MinowaT, YokoyamaS, KishimotoM, et al. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction[J]. Fuel, 1995, 74(12): 1735-1738.
|
5 |
曲磊, 崔翔, 杨海平, 等. 微藻水热液化制取生物油的研究进展[J]. 化工进展, 2018, 37(8): 2962-2969.
|
|
QuL, CuiX, YangH P, et al. Review on the preparation of bio-oil by microalgae hydrothermal liquefaction[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2962-2969.
|
6 |
ChiaramontiD, PrussiM, BuffiM, et al. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production[J]. Applied Energy, 2017, 185: 963-972.
|
7 |
方丽娜, 陈宇, 刘娅, 等.藻类水热液化产物生物油分离纯化及组分分析[J]. 化工学报, 2015, 66(9): 3640-3648.
|
|
FangL N, ChenY, LiuY, et al. Separation, purification and composition analysis of bio-oil from hydrothermal liquefaction of microalgae[J]. CIESC Journal, 2015, 66(9): 3640-3648.
|
8 |
TianC, LiB, LiuZ, et al. Hydrothermal liquefaction for algal biorefinery: a critical review[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 933-950.
|
9 |
ChistiY. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3): 294-306.
|
10 |
RawatI, KumarR R, MutandaT, et al. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production[J]. Applied Energy, 2013, 103: 444-467.
|
11 |
FuJ, YangC, WuJ, et al. Direct production of aviation fuels from microalgae lipids in water[J]. Fuel, 2015, 139: 678-683.
|
12 |
ChengJ, HuangR, YuT, et al. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction[J]. Bioresource Technology, 2014, 151: 415-418.
|
13 |
BillerP, FriedmanC, RossA B. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products[J]. Bioresource Technology, 2013, 136: 188-195.
|
14 |
ZhuY, AlbrechtK O, ElliottD C, et al. Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels[J]. Algal Research, 2013, 2(4): 455-464.
|
15 |
VardonD R, SharmaB K, BlazinaG V, et al. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis[J]. Bioresource Technology, 2012, 109: 178-187.
|
16 |
van WychenS, LaurensL M L. Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification: NREL/TP-5100-60958 [R]. NREL, 2013.
|
17 |
TangX, ZhangC, LiZ, et al. Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae[J]. Bioresource Technology, 2016, 202: 8-14.
|
18 |
YuG, ZhangY, SchidemanL, et al. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae[J]. Energy & Environmental Science, 2011, 4(11): 4587.
|
19 |
LewisT, NicholsP D, McMeekinT A. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs[J]. Journal of Microbiological Methods, 2000, 43(2): 107-116.
|
20 |
HuangR, ChengJ, QiuY, et al. Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature[J]. Energy Conversion and Management, 2015, 105: 791-797.
|
21 |
TanziC D, VianM A, ChematF. New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process[J]. Bioresource Technology, 2013, 134: 271-275.
|
22 |
ZhangC, TangX, YangX. Overcoming the cell wall recalcitrance of heterotrophic Chlorella to promote the efficiency of lipid extraction[J]. Journal of Cleaner Production, 2018, 198: 1224-1231.
|
23 |
BlighE, DyerW. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1958, 37: 911-917.
|
24 |
MataT M, MartinsA, CaetanoN S. Microalgae for biodiesel production and other applications: a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 217-232.
|
25 |
YooG, MinS P, YangJ W, et al. Lipid content in microalgae determines the quality of biocrude and energy return on investment of hydrothermal liquefaction[J]. Applied Energy, 2015, 156: 354-361.
|
26 |
张冀翔, 蒋宝辉, 王东, 等.微藻水热液化生物油化学性质与表征方法综述[J]. 化工学报, 2016, 67(5): 1644-1653.
|
|
ZhangJ X, JiangB H, WangD, et al. Chemical properties and characterization methods for hydrothermal liquefaction bio-crude from microalgae: a review[J]. CIESC Journal, 2016, 67(5): 1644-1653.
|
27 |
TorriC, AlbaL G, SamorìC, et al. Hydrothermal treatment (HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation[J]. Energy & Fuels, 2012, 26(1): 658-671.
|
28 |
AlbaL G, TorriC, SamorìC, et al. Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept[J]. Energy & Fuels, 2012, 26(1): 642-657.
|
29 |
ChangiS, BrownT M, SavageP E. Reaction kinetics and pathways for phytol in high-temperature water[J]. Chemical Engineering Journal, 2012, 189/190(5): 336-345.
|
30 |
YangW, LiX, LiZ, et al. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures[J]. Bioresource Technology, 2015, 196: 99-108.
|