化工学报 ›› 2016, Vol. 67 ›› Issue (5): 1644-1653.DOI: 10.11949/j.issn.0438-1157.20151582
张冀翔, 蒋宝辉, 王东, 魏耀东
收稿日期:
2015-10-19
修回日期:
2015-12-01
出版日期:
2016-05-05
发布日期:
2016-05-05
通讯作者:
张冀翔
基金资助:
国家自然科学基金项目(21406265);中国石油大学(北京)科研基金项目(2462013YJRC022)。
ZHANG Jixiang, JIANG Baohui, WANG Dong, WEI Yaodong
Received:
2015-10-19
Revised:
2015-12-01
Online:
2016-05-05
Published:
2016-05-05
Supported by:
supported by the National Natural Science Foundation of China (21406265) and the Science Foundation of China University of Petroleum, Beijing (2462013YJRC022).
摘要:
微藻水热液化生物油由于性质较差,不能直接作为车载燃料使用,与现代石油炼制工艺结合是一种新的应用途径。综述了微藻生物油的化学性质,包括化学组成、官能团组成与杂原子化合物组成等信息,比较分析了GC-MS、FTIR、NMR和FT-ICR MS等表征方法的异同,简要回顾了微藻水热液化反应机理和精制方法。重点指出微藻水热液化生物油中含氧、含氮化合物含量较高,并具有较高的芳香度和不饱和度,催化加氢精制能够有效脱除杂原子,并增加烷烃含量。微藻基生物燃料的发展,不仅需要精制工艺的提升,也有赖于表征方法的进步。
中图分类号:
张冀翔, 蒋宝辉, 王东, 魏耀东. 微藻水热液化生物油化学性质与表征方法综述[J]. 化工学报, 2016, 67(5): 1644-1653.
ZHANG Jixiang, JIANG Baohui, WANG Dong, WEI Yaodong. Chemical properties and characterization methods for hydrothermal liquefaction bio-crude from microalgae: a review[J]. CIESC Journal, 2016, 67(5): 1644-1653.
[1] | ELLIOTT D, BECKMAN D, BRIDGWATER A V, et al. Developments in direct thermochemical liquefaction of biomass: 1983—1990 [J]. Energy & Fuels, 1991, 5(3): 399-410. DOI: 10.1021/ef00027a008. |
[2] | TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies [J]. Energy, 2011, 36(5): 2328-2342. DOI: 10.1016/j.energy.2011.03.013. |
[3] | ZHU Y H, ALBRECHT K O, ELLIOTT D C, et al. Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels [J]. Algal Research-Biomass Biofuels and Bioproducts, 2013, 2(4): 455-464. DOI: 10.1016/j.algal.2013.07.003. |
[4] | CHENG J, HUANG R, Yu T, et al. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction [J]. Bioresource Technology, 2014, 151: 415-418. DOI: 10.1016/j. biortech. 2013.10.033. |
[5] | BRENNAN L, OWENDE P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products [J]. Renewable & Sustainable Energy Reviews, 2010, 14(2): 557-577. DOI: 10.1016/j.rser.2009.10.009. |
[6] | DUAN P G, SAVAGE P E. Hydrothermal liquefaction of a microalga with heterogeneous catalysts [J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 52-61. DOI: 10.1021/ie100758s. |
[7] | DUAN P G, SAVAGE P E. Upgrading of crude algal bio-oil in supercritical water [J]. Bioresource Technology, 2011, 102(2): 1899-1906. DOI: 10.1016/j.biortech.2010.08.013. |
[8] | AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass [J]. Renewable & Sustainable Energy Reviews, 2011, 15(3): 1615-1624. DOI: 10.1016/j.rser.2010.11.054. |
[9] | YEH T M, DICKINSON J G, FRANCK A, et al. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass [J]. Journal of Chemical Technology and Biotechnology, 2013, 88(1): 13-24. DOI: 10.1002/jctb.3933. |
[10] | PAVLOVIC I, KNEZ Z, SKERGET M. Hydrothermal reactions of agricultural and food processing wastes in sub-and supercritical water: a review of fundamentals, mechanisms, and state of research [J]. Journal of Agricultural and Food Chemistry, 2013, 61(34): 8003-8025. DOI: 10.1021/jf401008a. |
[11] | XIU S N, SHAHBAZI A. Bio-oil production and upgrading research: a review [J]. Renewable & Sustainable Energy Reviews, 2012, 16(7): 4406-4414. DOI: 10.1016/j.rser.2012.04.028. |
[12] | 陈裕鹏, 黄艳琴, 阴秀丽, 等. 藻类生物质水热液化制备生物油的研究进展 [J]. 石油学报(石油加工), 2014, 30(4): 756-763. DOI: 10.3969/j.issn.1001-8719.2014. 04.028. CHEN Y P, HUANG Y Q, YIN X L, et al. Research progress of producing bio-oil from hydrothermal liquefaction of algae[J].Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(4): 756-763. DOI: 10.3969/j.issn.1001-8719.2014.04.028. |
[13] | 丁冉冉, 吴玉龙, 陈宇, 等. 藻类液化生物油的催化脱氧改质进展 [J]. 化工学报, 2014, 65(7): 2685-2695. DOI: 10.3969/j.issn.0438-1157. 2014.07.028. DING R R, WU Y L, CHEN Y, et al. Recent advances on catalytic deoxygenation upgrading of liquefaction microalgae bio-oil [J]. CIESC Journal, 2014, 65(7): 2685-2695. DOI: 10.3969/j.issn. 0438-1157.2014.07.028. |
[14] | 胡见波, 杜泽学, 闵恩泽. 生物质水热液化机理研究进展 [J]. 石油炼制与化工, 2012, 43(4): 87-92. HU J B, DU Z X, MIN E Z. Progress in research of reaction mechanism concering hydrothermal liquefaction of biomass [J]. Petroleum Processing and Petrochemicals, 2012, 43(4): 87-92. |
[15] | PETERSON A A, VOGEL F, LACHANCE R P, et al. Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies [J]. Energy & Environmental Science, 2008, 1(1): 32-65. DOI: 10.1039/b810100k. |
[16] | HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering [J]. Chemical Reviews, 2006, 106(9): 4044-4098. DOI: 10.1021/cr068360d. |
[17] | TRAN N H, BARTLETT J R, KANNANGARA G S K, et al. Catalytic upgrading of biorefinery oil from micro-algae [J]. Fuel, 2010, 89(2): 265-274. DOI: 10.1016/j.fuel.2009.08.015. |
[18] | GUO Y, YEH T, SONG W H, et al. A review of bio-oil production from hydrothermal liquefaction of algae [J]. Renewable & Sustainable Energy Reviews, 2015, 48: 776-790. DOI: 10.1016/j.rser.2015.04.049. |
[19] | TEKIN K, KARAGOZ S, BEKTAS S. A review of hydrothermal biomass processing [J]. Renewable & Sustainable Energy Reviews, 2014, 40:673-687. DOI: 10.1016/j.rser.2014.07.216. |
[20] | 阎立峰, 朱清时. 以生物质为原材料的化学化工 [J]. 化工学报, 2004, 55(12): 1938-1943. YAN L F, ZHU Q S. New chemical industry based on biomass [J]. Journal of Chemical Industry and Engineering (China), 2004, 55(12): 1938-1943. |
[21] | OFEMIA K S, ZHANG Y, FUNK T. Hydrothermal processing of swine manure into oil using a continuous reactor system: development and testing [J]. Transactions of the Asabe, 2006, 49(2): 533-541. |
[22] | LI H, LIU Z D, ZHANG Y H, et al. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction [J]. Bioresource Technology, 2014, 154: 322-329. DOI: 10.1016/j.biortech.2013.12.074. |
[23] | GAI C, ZHANG Y H, CHEN W T, et al. An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis [J]. Energy Conversion and Management, 2015, 96: 330-339. DOI: 10.1016/j.enconman.2015.02.056. |
[24] | JENA U, DAS K C, KASTNER J R. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis [J]. Bioresource Technology, 2011, 102(10): 6221-6229. DOI: 10.1016/j.biortech.2011.02.057. |
[25] | TIAN C Y, LIU Z D, ZHANG Y H, et al. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: effects of operational parameters and relations of products [J]. Bioresource Technology, 2015, 184: 336-343. DOI: 10.1016/j.biortech. 2014.10.093. |
[26] | TOMMASO G, CHEN W T, LI P, et al. Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae [J]. Bioresource Technology, 2015, 178: 139-146. DOI: 10.1016/j.biortech. 2014.10.011. |
[27] | BILLER P, ROSS A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content [J]. Bioresource Technology, 2011, 102(1):215-225. DOI: 10.1016/j.biortech.2010.06.028. |
[28] | TORRI C, ALBA L G, SAMORI C, et al. Hydrothermal treatment (HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation [J]. Energy & Fuels, 2012, 26(1): 658-671. DOI: 10.1021/ef201417e. |
[29] | CHEN W T, ZHANG Y H, ZHANG J X, et al. Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil [J]. Applied Energy, 2014, 128: 209-216. DOI: 10.1016/j.apenergy.2014.04.068. |
[30] | ZHANG J X, CHEN W T, ZHANG P, et al. Hydrothermal liquefaction of Chlorella pyrenoidosa in sub-and supercritical ethanol with heterogeneous catalysts [J]. Bioresource Technology, 2013, 133: 389-397. DOI:10.1016/j.biortech.2013.01.076. |
[31] | BAI X J, DUAN P G, XU Y P, et al. Hydrothermal catalytic processing of pretreated algal oil: a catalyst screening study [J]. Fuel, 2014, 120: 141-149. DOI:10.1016/j.fuel.2013.12.012. |
[32] | DUAN P G, SAVAGE P E. Catalytic hydrotreatment of crude algal bio-oil in supercritical water [J]. Applied Catalysis B-Environmental, 2011, 104(1/2): 136-143. DOI: 10.1016/j.apcatb.2011.02.020. |
[33] | VARDON D R, SHARMA B K, SCOTT J, et al. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge [J]. Bioresource Technology, 2011, 102(17): 8295-8303. DOI: 10.1016/j.biortech. 2011.06.041. |
[34] | GAI C, ZHANG Y H, CHEN W T, et al. Energy and nutrient recovery efficiencies in biocrude oil produced via hydrothermal liquefaction of Chlorella pyrenoidosa [J]. RSC Advances, 2014, 4(33): 16958-16967. DOI: 10.1039/c3ra46607h. |
[35] | ZOU S P, WU Y L, YANG M D, et al. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake [J]. Energy, 2010, 35(12): 5406-5411. DOI: 10.1016/j.energy.2010.07.013. |
[36] | ROSS A B, BILLER P, KUBACKI M L, et al. Hydrothermal processing of microalgae using alkali and organic acids [J]. Fuel, 2010, 89(9): 2234-2243. DOI: 10.1016/j.fuel.2010.01.025. |
[37] | LEONARDIS I, CHIABERGE S, FIORANI T, et al. Characterization of bio-oil from hydrothermal liquefaction of organic waste by NMR spectroscopy and FTICR mass spectrometry [J]. ChemSusChem, 2013, 6(1): 160-167. DOI: 10.1002/cssc.201200314. |
[38] | XU D H, SAVAGE P E. Characterization of biocrudes recovered with and without solvent after hydrothermal liquefaction of algae [J]. Algal Research-Biomass Biofuels and Bioproducts, 2014, 6: 1-7. DOI: 10.1016/j.algal.2014.08.007. |
[39] | AUDO M, PARASCHIV M, QUEFFELEC C, et al. Subcritical hydrothermal liquefaction of microalgae residues as a green route to alternative road binders [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4): 583-590. DOI: 10.1021/acssuschemeng. 5b00088. |
[40] | VARDON D R, SHARMA B K, BLAZINA G V, et al. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis [J]. Bioresource Technology, 2012, 109: 178-187. DOI: 10.1016/j.biortech. 2012.01.008. |
[41] | 史权, 赵锁奇, 徐春明, 等. 傅立叶变换离子回旋共振质谱仪在石油组成分析中的应用 [J]. 质谱学报, 2008, 29(6): 367-378. SHI Q, ZHAO S Q, XU C M, et al. Fourier transform ion cyclotron resonance mass spectrometry and its application in petroleum analysis [J]. Journal of Chinese Mass Spectrometry Society, 2008, 29(6): 367-378. |
[42] | CHIABERGE S, LEONARDIS I, FIORANI T, et al. Bio-oil from waste: a comprehensive analytical study by soft-ionization FTICR mass spectrometry [J]. Energy & Fuels, 2014, 28(3): 2019-2026. DOI: 10. 1021/ef402452f. |
[43] | SUDASINGHE N, DUNGAN B, LAMMERS P, et al. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina [J]. Fuel, 2014, 119:47-56. DOI: 10.1016/j.fuel.2013.11.019. |
[44] | SUDASINGHE N, REDDY H, CSAKAN N, et al. Temperature-dependent lipid conversion and nonlipid composition of microalgal hydrothermal liquefaction oils monitored by Fourier transform ion cyclotron resonance mass spectrometry [J]. BioEnergy Research, 2015: 1-11. DOI: 10.1007/s12155-015-9635-9. |
[45] | SANGUINETI M M, HOURANI N, WITT M, et al. Analysis of impact of temperature and saltwater on Nannochloropsis salina bio-oil production by ultra high resolution APCI FT-ICR MS [J]. Algal Research, 2015, 9: 227-235. DOI: 10.1016/j.algal.2015.02.026. |
[46] | MINOWA T, YOKOYAMA S, KISHIMOTO M, et al. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction [J]. Fuel, 1995, 74(12): 1735-1738. DOI: 10.1016/0016-2361(95)80001-X. |
[47] | JENA U, DAS K C, KASTNER J R. Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis [J]. Applied Energy, 2012, 98: 368-375. DOI: 10.1016/j.apenergy.2012.03.056. |
[48] | BILLER P, RILEY R, ROSS A B. Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids [J]. Bioresource Technology, 2011, 102(7): 4841-4848. DOI: 10.1016/j.biortech. 2010.12.113. |
[49] | XU Y F, ZHENG X J, YU H Q, et al. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5 [J]. Bioresource Technology, 2014, 156: 1-5. DOI: 10.1016/j.biortech. 2014.01.010. |
[50] | DUAN P G, BAI X J, XU Y P, et al. Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water [J]. Fuel, 2013, 109: 225-233. DOI:10.1016/j.fuel.2012.12.074. |
[51] | ELLIOTT D C, HART T R, SCHMIDT A J, et al. Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor [J]. Algal Research-Biomass Biofuels and Bioproducts, 2013, 2(4): 445-454. DOI: 10.1016/j.algal.2013.08.005. |
[52] | ROUSSIS S G, CRANFORD R, SYTKOVETSKIY N. Thermal treatment of crude algae oils prepared under hydrothermal extraction conditions [J]. Energy & Fuels, 2012, 26(8): 5294-5299. DOI: 10.1021/ef300798b. |
[53] | DUAN P G, WANG B, XU Y P. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae [J]. Bioresource Technology, 2015, 186: 58-66. DOI: 10.1016/j.biortech.2015.03.050. |
[54] | SUDASINGHE N, CORT J R, HALLEN R, et al. Hydrothermal liquefaction oil and hydrotreated product from pine feedstock characterized by heteronuclear two-dimensional NMR spectroscopy and FT-ICR mass spectrometry [J]. Fuel, 2014, 137: 60-69. DOI: 10.1016/j.fuel.2014.07.069. |
[1] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[2] | 包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692. |
[3] | 王佳怡, 范垂钢, 李松庚. 碳氧官能团对煤焦低温还原NO的影响[J]. 化工学报, 2022, 73(5): 2140-2148. |
[4] | 杨英杰, 杨赫, 朱家龙, 郭双淇, 尚妍, 李扬, 靳立军, 胡浩权. 淖毛湖煤慢速热解过程官能团相互作用[J]. 化工学报, 2022, 73(2): 865-875. |
[5] | 王润涛, 罗泽军, 王储, 朱锡锋. 生物油蒸馏残渣与废弃塑料催化共热解协同作用的研究[J]. 化工学报, 2022, 73(11): 5088-5097. |
[6] | 秦坤, 王章鸿, 张会岩. 聚乙烯与过渡金属介入对木质素热解过程中表面官能团演变的影响[J]. 化工学报, 2022, 73(11): 5201-5210. |
[7] | 梁苏卓成, 姬国勋, 孙新利, 王波, 张仕通, 代星. 硅杂原子提升冠醚对锂离子络合能力的机理理论研究[J]. 化工学报, 2021, 72(6): 3149-3159. |
[8] | 颜蓓蓓, 王建, 刘彬, 陈冠益, 程占军. 生物油金属水热原位加氢提质技术研究进展[J]. 化工学报, 2021, 72(4): 1783-1795. |
[9] | 杨耀钧, 刁瑞, 王储, 朱锡锋. 不同金属氧化物对重质生物油再裂解的比较性研究[J]. 化工学报, 2021, 72(11): 5820-5830. |
[10] | 孙焱, 沈晓文, 许细薇, 蒋恩臣, 刘雪聪. 化学链耦合催化重整热解生物油制备合成气[J]. 化工学报, 2021, 72(11): 5607-5619. |
[11] | 邓伟,林镇浩,熊哲,汪雪棚,徐俊,江龙,苏胜,汪一,胡松,向军. 生物油电催化加氢提质技术研究进展[J]. 化工学报, 2021, 72(10): 4987-5001. |
[12] | 苏银海,张书平,刘凌沁,熊源泉. 活性炭催化热解纤维素协同制备酚类和合成气[J]. 化工学报, 2021, 72(10): 5206-5217. |
[13] | 马珊宏, 叶枫, 王燕鸿, 郎雪梅, 樊栓狮, 李刚. ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究[J]. 化工学报, 2020, 71(7): 3345-3353. |
[14] | 董灵玉, 葛睿, 原亚飞, 唐宋元, 郝广平, 陆安慧. 多孔炭基二氧化碳电催化材料研究进展[J]. 化工学报, 2020, 71(6): 2492-2509. |
[15] | 张亚婷, 张博超, 张建兰, 李可可, 党永强, 段瑛峰. “自下而上”化学合成纳米石墨烯的研究进展[J]. 化工学报, 2020, 71(6): 2628-2642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||