化工学报 ›› 2019, Vol. 70 ›› Issue (8): 2919-2927.DOI: 10.11949/0438-1157.20190166
收稿日期:
2019-03-01
修回日期:
2019-05-15
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
程军
作者简介:
张泽(1993—),男,博士研究生,基金资助:
Ze ZHANG(),Jun CHENG(
),Yi QIU,Hao GUO,Weijuan YANG,Jianzhong LIU
Received:
2019-03-01
Revised:
2019-05-15
Online:
2019-08-05
Published:
2019-08-05
Contact:
Jun CHENG
摘要:
采用NaOH处理Y分子筛脱硅改性为梯度介孔分子筛,并负载镍制成双功能催化剂转化脂肪酸甲酯脱氧断键制成生物航油。微观测试表明:NaOH脱硅分子筛有效形成2~10 nm介孔,并造成一定程度的晶体结构膨胀。镍负载于NaOH处理1 h的脱硅梯度介孔Y分子筛作催化剂时,比表面积和孔容显著提高到554.9 m2/g和0.340 cm3/g。催化十六酸甲酯得到航油产物的选择性达到65.8%,并含有较高的异构烷烃(19.1%)及合适的芳香烃(12.8%),展现出良好的燃料特性。作为脱氧断键反应的副产物,气相产物中CH4选择性高达25.2%,CO2稳定在12%左右。虽然航油产物的整体选择性随NaOH处理时间变化较大,但各组分含量相对稳定,说明NaOH脱硅处理的梯度介孔Y分子筛保持了良好的催化转化制航油性能。
中图分类号:
张泽, 程军, 仇亿, 郭浩, 杨卫娟, 刘建忠. 碱处理脱硅介孔分子筛催化脱氧断键制生物航油研究[J]. 化工学报, 2019, 70(8): 2919-2927.
Ze ZHANG, Jun CHENG, Yi QIU, Hao GUO, Weijuan YANG, Jianzhong LIU. Hydrodeoxygenation and hydrocracking to produce jet biofuel catalyzed by mesoporous zeolite desilicated with NaOH treatment[J]. CIESC Journal, 2019, 70(8): 2919-2927.
NaOH处理时间/h | BET比表面积/(m2/g) | 孔容/(cm3/g) |
---|---|---|
0.25 | 530.2 | 0.328 |
0.5 | 556.3 | 0.340 |
1 | 554.9 | 0.340 |
2 | 518.6 | 0.319 |
4 | 473.3 | 0.296 |
表1 10%Ni负载于不同时间NaOH处理所得的梯度介孔Y分子筛催化剂孔隙结构数据
Table 1 Textural properties of 10% Ni/meso-Y zeolite desilicated with NaOH for various durations
NaOH处理时间/h | BET比表面积/(m2/g) | 孔容/(cm3/g) |
---|---|---|
0.25 | 530.2 | 0.328 |
0.5 | 556.3 | 0.340 |
1 | 554.9 | 0.340 |
2 | 518.6 | 0.319 |
4 | 473.3 | 0.296 |
图5 10%Ni负载于不同时间NaOH处理所得的梯度介孔Y分子筛催化十六酸甲酯转化的气相产物分析
Fig.5 Gas phase product profiles of methyl palmitate conversion catalyzed by 10% Ni/meso-Y zeolite desilicated with NaOH for various durations
图6 10%Ni负载于不同时间NaOH处理所得的梯度介孔Y分子筛催化十六酸甲酯转化的液相产物分析
Fig.6 Liquid phase product profiles of methyl palmitate conversion catalyzed by 10% Ni/meso-Y zeolite desilicated with NaOH for various durations
1 | 缪晓玲, 吴庆余 . 微藻生物质可再生能源的开发利用[J]. 可再生能源, 2003, (3): 13-16. |
Miao X L , Wu Q Y . Exploitation of biomass renewable energy sources of microalgae[J]. Renewable Energy, 2003, (3): 13-16. | |
2 | 孙晓英, 刘祥, 赵雪冰, 等 . 航空生物燃料制备技术及其应用研究进展[J]. 生物工程学报, 2013, 29(3): 285-298. |
Sun X Y , Liu X , Zhao X B , et al . Progress in synthesis technologies and application of aviation biofuels[J]. Chinese Journal of Biotechnology, 2013, 29(3): 285-298. | |
3 | Yang X , Guo F , Xue S , et al . Carbon distribution of algae-based alternative aviation fuel obtained by different pathways[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1129-1147. |
4 | Cheng J , Huang R , Li T , et al . Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids[J]. Bioresource Technology, 2014, 170: 69-75. |
5 | Cheng J , Qiu Y , Huang R , et al . Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst[J]. Bioresource Technology, 2016, 221: 344-349. |
6 | Lee J Y , Yoo C , Jun S Y , et al . Comparison of several methods for effective lipid extraction from microalgae[J]. Bioresource Technology, 2010, 101( Suppl 1): S75-S77. |
7 | 黄睿 . 微藻细胞先酯交换再萃取制生物柴油的机理研究[D]. 杭州: 浙江大学, 2016. |
Huang R . Biodiesel production from wet microalgae through extraction with hexane after the transesterification of lipid[D]. Hangzhou: Zhejiang University, 2016. | |
8 | Huang R , Cheng J , Qiu Y , et al . Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature[J]. Energy Conversion and Management, 2015, 105: 791-797. |
9 | Wang W C , Tao L . Bio-jet fuel conversion technologies[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 801-822. |
10 | 欧阳仟, 姚静雯, 黄进, 等 . Pt/Al2O3-beta催化脂肪酸甲酯加氢脱氧制备第二代生物柴油[J]. 石油化工, 2018, 47(9): 929-935. |
Ouyang Q , Yao J W , Huang J , et al . Catalytic hydrodeoxygenation of fatty acid methyl esters over Pt/Al2O3-beta to produce second-generation biodiesel[J]. Petrochemical Technology, 2018, 47(9): 929-935. | |
11 | 吴煜, 刘学军, 张怡, 等 . Pt/ZSM-5-Al2O3催化的脂肪酸甲酯加氢脱氧反应[J]. 石油学报(石油加工), 2018, 24(5): 904-911. |
Wu Y , Liu X J , Zhang Y , et al . Hydrodeoxygenation of fatty acid methyl esters catalyzed by Pt/ZSM-5-Al2O3 [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 24(5): 904-911. | |
12 | Peng B , Yuan X , Zhao C , et al . Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes[J]. Journal of the American Chemical Society, 2012, 134(22): 9400-9405. |
13 | Chen L , Fu J , Yang L , et al . Catalytic hydrotreatment of fatty acid methyl esters to diesel-like alkanes over Hβ zeolite-supported nickel catalysts[J]. ChemCatChem, 2014, 6(12): 3482-3492. |
14 | Chen L , Li H , Fu J , et al . Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst[J]. Catalysis Today, 2016, 259: 266-276. |
15 | de Jong K P , Zecevic J , Friedrich H , et al . Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts[J]. Angewandte Chemie, 2010, 49(52): 10074-10078. |
16 | Zhu J , Zhu Y , Zhu L , et al . Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template[J]. Journal of the American Chemical Society, 2014, 136(6): 2503-2310. |
17 | Li T , Cheng J , Zhang X , et al . Jet range hydrocarbons converted from microalgal biodiesel over mesoporous zeolite-based catalysts[J]. International Journal of Hydrogen Energy, 2018, 43(21): 9988-9993. |
18 | García-Martínez J , Johnson M , Valla J , et al . Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance[J]. Catalysis Science & Technology, 2012, 2(5): 987-994. |
19 | Plana-Pallejà J , Abelló S , Berrueco C , et al . Effect of zeolite acidity and mesoporosity on the activity of Fischer–Tropsch Fe/ZSM-5 bifunctional catalysts[J]. Applied Catalysis A: General, 2016, 515: 126-135. |
20 | Matias P , Lopes J M , Ayrault P , et al . Effect of dealumination by acid treatment of a HMCM-22 zeolite on the acidity and activity of the pore systems[J]. Applied Catalysis A: General, 2009, 365(2): 207-213. |
21 | Gac W , Greluk M , Słowik G , et al . Effects of dealumination on the performance of Ni-containing BEA catalysts in bioethanol steam reforming[J]. Applied Catalysis B: Environmental, 2018, 237: 94-109. |
22 | 韩蕾, 欧阳颖, 罗一斌, 等 . 分子筛孔结构对轻烃催化裂解性能的影响[J]. 石油学报(石油加工), 2018, 34(6): 1057-1066. |
Han L , Ouyang Y , Luo Y B , et al . Effects of pore structure on the catalytic performance of ZSM-5 zeolite in light hydrocarbons cracking[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(6): 1057-1066. | |
23 | Lanzafame P , Perathoner S , Centi G , et al . Effect of the structure and mesoporosity in Ni/Zeolite catalysts for n-hexadecane hydroisomerisation and hydrocracking[J]. ChemCatChem, 2017, 9(9): 1632-1640. |
24 | Cheng J , Li T , Huang R , et al . Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality[J]. Bioresource Technology, 2014, 158: 378-382. |
25 | Li T , Cheng J , Huang R , et al . Hydrocracking of palm oil to jet biofuel over different zeolites[J]. International Journal of Hydrogen Energy, 2016, 41(47): 21883-21887. |
26 | Patterson A L . The Scherrer formula for X-ray particle size determination[J]. Physical Review, 1939, 56(10): 978-982. |
27 | Zhang Z , Cheng J , Qiu Y , et al . Competitive conversion pathways of methyl palmitate to produce jet biofuel over Ni/desilicated meso-Y zeolite catalyst[J]. Fuel, 2019, 244: 472-478. |
28 | Cheng J , Zhang Z , Zhang X , et al . Hydrodeoxygenation and hydrocracking of microalgae biodiesel to produce jet biofuel over H3PW12O40-Ni/hierarchical mesoporous zeolite Y catalyst[J]. Fuel, 2019, 245: 384-391. |
29 | Galadima A , Muraza O . Catalytic upgrading of vegetable oils into jet fuels range hydrocarbons using heterogeneous catalysts: a review[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 12-23. |
30 | Ju C , Zhou Y , He M , et al . Improvement of selectivity from lipid to jet fuel by rational integration of feedstock properties and catalytic strategy[J]. Renewable Energy, 2016, 97: 1-7. |
31 | Gagea B C , Lorgouilloux Y , Altintas Y , et al . Bifunctional conversion of n-decane over HPW heteropoly acid incorporated into SBA-15 during synthesis[J]. Journal of Catalysis, 2009, 265(1): 99-108. |
32 | Liu Y , Sotelo-Boyás R , Murata K , et al . Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni–Mo and solid acids[J]. Energy & Fuels, 2011, 25(10): 4675-4685. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[7] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[8] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[9] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[10] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[11] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[12] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[13] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[14] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[15] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 155
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||