化工学报 ›› 2021, Vol. 72 ›› Issue (4): 1783-1795.DOI: 10.11949/0438-1157.20201102
颜蓓蓓1,2(),王建1,刘彬3,陈冠益4,5,程占军1,2()
收稿日期:
2020-08-03
修回日期:
2020-09-21
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
程占军
作者简介:
颜蓓蓓(1981—),女,博士,教授,基金资助:
YAN Beibei1,2(),WANG Jian1,LIU Bin3,CHEN Guanyi4,5,CHENG Zhanjun1,2()
Received:
2020-08-03
Revised:
2020-09-21
Online:
2021-04-05
Published:
2021-04-05
Contact:
CHENG Zhanjun
摘要:
水热液化技术可以将秸秆等木质纤维素类生物质转化为生物油,生物油提质可制备液体燃料和高附加值化学品。但生物油成分复杂,研发适宜的提质方法与工艺是当前的热点。金属水热原位加氢提质是一种新兴生物油提质技术,具有原料适应性广、成本低和效率高等优势,受到国内外广泛关注。本文从木质纤维素类生物质水热加氢提质原理、金属水热原位加氢最新研究进展及相关数值模拟方法三方面进行了综述,在此基础上指出目前该技术存在的主要问题,并指明未来研究方向。目前金属水热原位加氢提质过程活性氢和氢气作用机制尚不明晰;明确加氢催化剂与金属/金属氧化物的相互作用是制备高效加氢催化剂的关键;集总动力学和分子模拟等方法是金属水热原位加氢提质技术在理论计算领域未来的发展方向,有待进行深入研究。
中图分类号:
颜蓓蓓, 王建, 刘彬, 陈冠益, 程占军. 生物油金属水热原位加氢提质技术研究进展[J]. 化工学报, 2021, 72(4): 1783-1795.
YAN Beibei, WANG Jian, LIU Bin, CHEN Guanyi, CHENG Zhanjun. Research progress of bio-oil metal hydrothermal in-situ hydrogenation technology[J]. CIESC Journal, 2021, 72(4): 1783-1795.
1 | Vispute T P, Zhang H Y, Sanna A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science, 2010, 330(6008): 1222-1227. |
2 | Savage N. Fuel options: the ideal biofuel[J]. Nature, 2011, 474(7352): S9-S11. |
3 | Moore R H, Thornhill K L, Weinzierl B, et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions[J]. Nature, 2017, 543(7645): 411-415. |
4 | Wang H M, Male J, Wang Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catalysis, 2013, 3(5): 1047-1070. |
5 | Bi Z T, Zhang J, Zhu Z Y, et al. Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction[J]. Applied Energy, 2018, 209: 435-444. |
6 | Miao C, Marin-Flores O, Dong T, et al. Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with in situ H2[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4521-4530. |
7 | Cheng S Y, Wei L, James J, et al. Hydrodeoxygenation upgrading of pine sawdust bio-oil using zinc metal with zero valency[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74: 146-153. |
8 | Jin W, Pastor‐Pérez L, Shen D K, et al. Catalytic upgrading of biomass model compounds: novel approaches and lessons learnt from traditional hydrodeoxygenation—a review[J]. ChemCatChem, 2019, 11(3): 924-960. |
9 | Cheng S Y, Wei L, James J, et al. Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst[J]. Energy Conversion and Management, 2017, 150: 331-342. |
10 | Xu J M, Long F, Jiang J C, et al. Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels[J]. Journal of Cleaner Production, 2019, 222: 784-792. |
11 | Liu W J, Zhang X S, Qu Y C, et al. Bio-oil upgrading at ambient pressure and temperature using zero valent metals[J]. Green Chemistry, 2012, 14(8): 2226-2233. |
12 | Xu Y, Long J X, Liu Q Y, et al. In situ hydrogenation of model compounds and raw bio-oil over Raney Ni catalyst[J]. Energy Conversion and Management, 2015, 89: 188-196. |
13 | Zhang Z H, Chen H, Wang C X, et al. Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor[J]. Fuel, 2018, 230: 211-217. |
14 | Miyata Y, Sagata K, Yamazaki Y, et al. Mechanism of the Fe-assisted hydrothermal liquefaction of lignocellulosic biomass[J]. Industrial & Engineering Chemistry Research, 2018, 57(44): 14870-14877. |
15 | Song J W, Yang Y, Yao G D, et al. Highly efficient synthesis of hydrogen storage material of formate from bicarbonate and water with general Zn powder[J]. Industrial & Engineering Chemistry Research, 2017, 56(22): 6349-6357. |
16 | Yang T H, Zhang W Q, Li R D, et al. Deoxy-liquefaction of corn stalk in subcritical water with hydrogen generated in situ via aluminum–water reaction[J]. Energy & Fuels, 2017, 31(9): 9605-9612. |
17 | Li R D, Li B S, Yang T H, et al. Hydrogenation of rice stalk in situ in supercritical ethanol–water co-solvent via catalytic ethanol steam reforming[J]. The Journal of Supercritical Fluids, 2018, 133: 309-317. |
18 | Park J Y, Jeon W, Lee J H, et al. Effects of supercritical fluids in catalytic upgrading of biomass pyrolysis oil[J]. Chemical Engineering Journal, 2019, 377:120312. |
19 | Jo H, Verma D, Kim J. Excellent aging stability of upgraded fast pyrolysis bio-oil in supercritical ethanol[J]. Fuel, 2018, 232:610-619. |
20 | Hosseinpour M, Soltani M, Noofeli A, et al. An optimization study on heavy oil upgrading in supercritical water through the response surface methodology (RSM)[J]. Fuel, 2020, 271: 117618. |
21 | Lin B J, Chen W H, Hsieh T H, et al. Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels[J]. Renewable Energy, 2019, 136: 223-234. |
22 | Lian X, Xue Y, Zhao Z C, et al. Progress on upgrading methods of bio-oil: a review[J]. International Journal of Energy Research, 2017. 41(13): 1798-1816. |
23 | 陈尔旺, 陈明强, 王君, 等. 生物油分离技术的研究进展[J]. 广州化工, 2011, 39(3): 3-5, 45. |
Chen R W, Chen M Q, Wang J, et al. Research progress of bio-oil separation[J]. Guangzhou Chemical Industry, 2011, 39(3): 3-5, 45. | |
24 | 吕东灿, 刘运权, 王夺, 等. 生物油萃取分离技术的研究进展[J]. 化工进展, 2012, 31(7): 1425-1431. |
Lyu D C, Liu Y Q, Wang D, et al. Research progress in separation of bio-oils by extraction methods[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1425-1431. | |
25 | Li H, Yang S, Riisager A, et al. Zeolite and zeotype-catalysed transformations of biofuranic compounds[J]. Green Chemistry, 2016, 18(21): 5701-5735. |
26 | Wu J B, Zhu H Q, Wu Z W, et al. High Si/Al ratio HZSM-5 zeolite: an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chemistry, 2015, 17(4): 2353-2357. |
27 | Kurnia I, Karnjanakom S, Bayu A, et al. In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites[J]. Fuel Processing Technology, 2017, 167: 730-737. |
28 | Agarwal A, Park S J, Park J H. Catalytic upgrading of Kraft lignin derived bio-oil in supercritical ethanol over different crystal size hierarchical nano-HZSM5[J]. Fuel, 2020, 271: 117630. |
29 | Yang Z X, Kumar A, Huhnke R L. Review of recent developments to improve storage and transportation stability of bio-oil[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 859-870. |
30 | 王贤华, 陈汉平, 罗凯, 等. 提高生物油稳定性的方法[J]. 化工进展, 2006, 25(7): 765-769. |
Wang X H, Chen H P, Luo K, et al. Methods to improve the stability of bio-oil [J]. Chemical Industry and Engineering Progress, 2006, 25(7): 765-769. | |
31 | Zhang C, Jia C H, Cao Y, et al. Water-assisted selective hydrodeoxygenation of phenol to benzene over Ru composite catalyst in biphasic process[J]. Green Chemistry, 2019, 21(7): 1668-1679. |
32 | Jocz J N, Savage P E. Behavior of cholesterol and catalysts in supercritical water[J]. Energy & Fuels, 2016, 30(10): 7937-7946. |
33 | Ambursa M M, Ali T H, Voon L H, et al. Hydrodeoxygenation of dibenzofuran to bicyclic hydrocarbons using bimetallic Cu-Ni catalysts supported on metal oxides[J]. Fuel, 2016, 180(15): 767-776. |
34 | Zhang S Q, Yang X, Zheng K, et al. In-situ hydrogenation of furfural conversion to furfuryl alcohol via aqueous-phase reforming of methanol[J]. Applied Catalysis A, General, 2019, 581: 103–110. |
35 | Koichumanova K, Vikla A K K, Cortese R, et al. In situ ATR-IR studies in aqueous phase reforming of hydroxyacetone on Pt/ZrO2, and Pt/AlO(OH) catalysts: the role of aldol condensation[J]. Applied Catalysis B Environmental, 2018, 232: 454-463. |
36 | Vanesa D B, Concepcion H, Maria A L, et al. Coupling of glycerol-APR and in situ hydrodeoxygenation of fatty acid to produce hydrocarbons[J]. Fuel Processing Technology, 2019, 190: 21-28. |
37 | Zhang Z J, Wang Q W, Yang X L, et al. Sulfonic acid resin-catalyzed addition of phenols, carboxylic acids, and water to olefins: model reactions for catalytic upgrading of bio-oil[J]. Bioresource Technology, 2010, 101: 3685-3695. |
38 | 蒋恩臣, 史冬冬, 王明峰, 等. 生物油模型物糠醛催化加氢试验研究[J]. 农机化研究, 2017, 39(7):218-223. |
Jiang E C, Shi D D, Wang M F, et al. Experimental research on catalytic hydrogenation of bio-oil model compounds furfural[J]. Journal of Agricultural Mechanization Research, 2017, 39(7): 218-223. | |
39 | Zhou J P, Chen Z, Wang Y. Bioaldehydes and beyond: expanding the realm of bioderived chemicals using biogenic aldehydes as platforms[J]. Current Opinion in Chemical Biology, 2020, 59: 37-46. |
40 | He Z, Wang X Q. Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading[J]. Catalysis for Sustainable Energy, 2012, 1(1): 28-52. |
41 | Zhang J G, Yan N. Formic acid-mediated liquefaction of chitin[J]. Green Chemistry, 2016, 18: 5050–5058. |
42 | Wu K J, Yang M D, Chen Y, et al. Aqueous-phase ketonization of acetic acid over Zr/Mn mixed oxides[J]. AIChE Journal, 2017, 63(7): 2958-2967. |
43 | Elliott D C. Historical developments in hydroprocessing bio-oils[J]. Energy & Fuels, 2007, 21(3): 1792-1815. |
44 | Shaw A, Zhang X L. Density functional study on the thermal stabilities of phenolic bio-oil compounds[J]. Fuel, 2019, 255: 115732. |
45 | Guan Q Q, Huang X D, Liu J, et al. Supercritical water gasification of phenol using a Ru/CeO2 catalyst[J]. Chemical Engineering Journal, 2016, 283: 358-365. |
46 | Sun Z H, Fridrich B, Alessandra D S, et al. Bright side of lignin depolymerization: toward new platform chemicals[J]. Chemical Reviews, 2018, 118(2): 614-678. |
47 | Guan W X, Chen X, Jin S H, et al. Highly stable Nb2O5-Al2O3 composites supported Pt catalysts for hydrodeoxygenation of diphenyl ether[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14034-14042. |
48 | Ambursa M M, Voon L H, Ching J J, et al. Catalytic hydrodeoxygenation of dibenzofuran to fuel graded molecule over mesoporous supported bimetallic catalysts[J]. Fuel, 2019, 236: 236-243. |
49 | Laborda F, Bolea E, Baranguan M T, et al. Hydride generation in analytical chemistry and nascent hydrogen: when is it going to be over?[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(4): 797-802. |
50 | Fábos V, Yuen A K L, Masters A F, et al. Exploring the myth of nascent hydrogen and its implications for biomass conversions[J]. Chemistry-An Asian Journal, 2012, 7(11): 2629-2637. |
51 | Meija J, D'Ulivo A. Solution to nascent hydrogen challenge[J]. Analytical & Bioanalytical Chemistry, 2008, 392(5): 771-772. |
52 | Jin F M, Zeng X, Liu J K, et al. Highly efficient and autocatalytic H2O dissociation for CO2 reduction into formic acid with zinc[J]. Scientific Reports, 2014, 4: 4503. |
53 | Zeng X, Hatakeyama M, Ogata K, et al. New insights into highly efficient reduction of CO2 to formic acid by using zinc under mild hydrothermal conditions: a joint experimental and theoretical study[J]. Physical Chemistry Chemical Physics, 2014, 16(37): 19836-19840. |
54 | Cheng S Y, Wei L, Alsowij M R, et al. In situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon biofuel using Pd/C catalyst[J]. Journal of the Energy Institute, 2018, 91(2): 163-171. |
55 | Sun Y F, Hu H J, Wang Y T, et al. In situ hydrogenation of CO2 by Al/Fe and Zn/Cu alloy catalysts under mild conditions[J]. Chemical Engineering & Technology, 2019, 42(6): 1223-1231. |
56 | Le Y, Zhong H, Yang Y, et al. Mechanism study of reduction of CO2 into formic acid by in-situ hydrogen produced from water splitting with Zn: Zn/ZnO interface autocatalytic role[J]. Journal of Energy Chemistry, 2017, 26(5): 936-941. |
57 | Yao G D, Duo J, Jin B B, et al. Highly-efficient and autocatalytic reduction of NaHCO3 into formate by in situ hydrogen from water splitting with metal/metal oxide redox cycle[J]. Journal of Energy Chemistry, 2017, 26(5): 881-890. |
58 | Miyata Y, Sagata K, Hirose M, et al. Fe-assisted hydrothermal liquefaction of lignocellulosic biomass for producing high-grade bio-oil[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3562-3569. |
59 | Yang T H, Wang J, Li B S, et al. Effect of residence time on two-step liquefaction of rice straw in a CO2 atmosphere: differences between subcritical water and supercritical ethanol[J]. Bioresource Technology, 2017, 229: 143-151. |
60 | Yang T H, Shi L P, Li R D, et al. Hydrodeoxygenation of crude bio-oil in situ in the bio-oil aqueous phase with addition of zero-valent aluminum[J]. Fuel Processing Technology, 2019, 184: 65-72. |
61 | Şenol O İ, Viljava T R, Krause A O I. Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalyst: the effect of water[J]. Catalysis Today, 2005, 106(1/2/3/4): 186-189. |
62 | Laurent E, Delmon B. Influence of water in the deactivation of a sulfided NiMoγ-Al2O3 catalyst during hydrodeoxygenation[J]. Journal of Catalysis, 1994, 146(1): 281-291. |
63 | Li R D, Li B S, Kai X P, et al. Hydro-liquefaction of rice stalk in supercritical ethanol with in situ generated hydrogen[J]. Fuel Processing Technology, 2017, 167: 363-370. |
64 | Valdez P J, Savage P E. A reaction network for the hydrothermal liquefaction of Nannochloropsis sp.[J]. Algal Research, 2013, 2(4): 416-425. |
65 | Hietala D C, Faeth J L, Savage P E. A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp. [J]. Bioresource Technology, 2016, 214: 102-111. |
66 | Valdez P J, Nelson M C, Wang H Y, et al. Hydrothermal liquefaction of Nannochloropsis sp. : systematic study of process variables and analysis of the product fractions[J]. Biomass & Bioenergy, 2012, 46: 317-331. |
67 | Jena U, Das K C, Kastner J R. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis[J]. Bioresource Technology, 2011, 102(10): 6221-6229. |
68 | Sharifzadeh M, Richard C J, Shah N. Modelling the kinetics of pyrolysis oil hydrothermal upgrading based on the connectivity of oxygen atoms, quantified by 31P-NMR[J]. Biomass & Bioenergy, 2017, 98: 272-290. |
69 | 李勇, 刘锦超, 芦鹏飞, 等. 从常温常压到超临界乙醇的分子动力学模拟[J]. 物理学报, 2010, 59(7):4880-4887. |
Li Y, Liu J C, Lu P F, et al. Molecular dynamic simulation of ethanol from ambient temperature and pressure to supercritical conditions[J]. Acta Physica Sinica, 2010, 59(7): 4880-4887. | |
70 | 吴方棣, 郑辉东, 刘俊劭, 等. 分子动力学模拟在化工中的应用进展[J]. 重庆理工大学学报(自然科学), 2013, 27(10): 59-65. |
Wu F D, Zheng H D, Liu J S, et al. Progress of molecular dynamic simulation in chemical engineering [J]. Journal of Chongqing University of Technology (Natural Science), 2013, 27(10): 59-65. | |
71 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
72 | Rismiller S C, Groves M M, Meng M, et al. Water assisted liquefaction of lignocellulose biomass by ReaxFF based molecular dynamic simulations[J]. Fuel, 2018, 215: 835-843. |
73 | Liu X L, Li X X, Nie F G, et al. Initial reaction mechanism of bio-oil high-temperature oxidation simulated with reactive force field molecular dynamics[J]. Energy & Fuels, 2017, 31(2): 1608-1619. |
74 | Zhang M H, Geng Z F, Yu Y Z. Density functional theory (DFT) study on the dehydration of cellulose[J]. Energy & Fuels, 2011, 25(6): 2664-2670. |
75 | Zhou X W, Li W J, Mabon R, et al. A mechanistic model of fast pyrolysis of hemicellulose[J]. Energy & Environmental Science, 2018, 11: 1240-1260. |
76 | Huang J B, He C, Wu L Q, et al. Thermal degradation reaction mechanism of xylose: a DFT study[J]. Chemical Physics Letters, 2016, 658: 114-124. |
77 | Elder T, Beste A. Density functional theory study of the concerted pyrolysis mechanism for lignin models[J]. Energy & Fuels, 2014, 28(8): 5229-5235. |
78 | Yang X K, Li T, Tang, K, et al. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process[J]. Green Chemistry, 2017, 19(15): 3566-3573. |
79 | Zapol P, Jaffe J B, Hess A C. Ab initio study of hydrogen adsorption on the ZnO (1010) surface[J]. Surface Science, 1999, 422: 1-7. |
[1] | 包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692. |
[2] | 童海航, 石德智, 刘嘉宇, 蔡桦伊, 罗丹, 陈飞. 金属纳米颗粒辅助木质纤维素暗发酵生物制氢的研究进展[J]. 化工学报, 2022, 73(4): 1417-1435. |
[3] | 王润涛, 罗泽军, 王储, 朱锡锋. 生物油蒸馏残渣与废弃塑料催化共热解协同作用的研究[J]. 化工学报, 2022, 73(11): 5088-5097. |
[4] | 蒋丽群,岳元茂,徐禄江,钱乐,刘世君,赵增立,李海滨,廖艳芬. 预处理促进木质纤维素快速热解生成左旋葡聚糖[J]. 化工学报, 2021, 72(4): 1825-1832. |
[5] | 杨耀钧, 刁瑞, 王储, 朱锡锋. 不同金属氧化物对重质生物油再裂解的比较性研究[J]. 化工学报, 2021, 72(11): 5820-5830. |
[6] | 孙焱, 沈晓文, 许细薇, 蒋恩臣, 刘雪聪. 化学链耦合催化重整热解生物油制备合成气[J]. 化工学报, 2021, 72(11): 5607-5619. |
[7] | 邓伟,林镇浩,熊哲,汪雪棚,徐俊,江龙,苏胜,汪一,胡松,向军. 生物油电催化加氢提质技术研究进展[J]. 化工学报, 2021, 72(10): 4987-5001. |
[8] | 苏银海,张书平,刘凌沁,熊源泉. 活性炭催化热解纤维素协同制备酚类和合成气[J]. 化工学报, 2021, 72(10): 5206-5217. |
[9] | 赵金政, 周国辉, 刘晓敏. 离子液体在生物质溶解分离中的应用与机理研究[J]. 化工学报, 2021, 72(1): 247-258. |
[10] | 马珊宏, 叶枫, 王燕鸿, 郎雪梅, 樊栓狮, 李刚. ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究[J]. 化工学报, 2020, 71(7): 3345-3353. |
[11] | 罗泽军, 胡永华, 王雨松, 朱谢飞, 朱锡锋. 重质生物油理化性质及其热解特性研究[J]. 化工学报, 2019, 70(8): 3196-3201. |
[12] | 孙来芝, 陈雷, 赵保峰, 杨双霞, 谢新苹, 孟凡军, 司洪宇. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70(8): 3160-3166. |
[13] | 朱勇晨, 李小华, 张小雷, 胡超, 董文斌, 程静峰, 邵珊珊. NTP再生La改性多级孔HZSM-5及催化提质生物油的试验研究[J]. 化工学报, 2019, 70(5): 1795-1803. |
[14] | 唐晓寒, 杨晓奕. 微拟球藻油脂萃取及脱脂藻水热液化[J]. 化工学报, 2019, 70(11): 4356-4362. |
[15] | 张继宗, 常厚春, 常建民, 龙金星, 李雪辉. 生物油对生物油基淀粉胶黏剂性能的影响[J]. 化工学报, 2018, 69(S1): 123-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||