化工学报 ›› 2021, Vol. 72 ›› Issue (1): 521-533.DOI: 10.11949/0438-1157.20201004
兰斌1,2,3(),徐骥1,2,3,刘志成4,王军武1,2,3()
收稿日期:
2020-07-23
修回日期:
2020-10-14
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
王军武
作者简介:
兰斌(1993—),男,博士研究生,基金资助:
LAN Bin1,2,3(),XU Ji1,2,3,LIU Zhicheng4,WANG Junwu1,2,3()
Received:
2020-07-23
Revised:
2020-10-14
Online:
2021-01-05
Published:
2021-01-05
Contact:
WANG Junwu
摘要:
采用基于GPU(graphics processing unit)大规模并行的粗粒化CFD-DEM(computational fluid dynamics-discrete element method)方法,耦合多分散、非球形颗粒曳力模型,对连续操作的三维流化床进行了长时间颗粒停留时间模拟。通过对不同尺寸(长度)流化床的模拟发现不同粒径颗粒平均停留时间(mean residence time,MRT)与流化床长度呈线性关系,该关系可以用来预测更大尺寸流化床内的颗粒停留时间。随着流化床长度的增加,不同粒径颗粒MRT的差异变大,说明流化床长度的增加对不同尺寸颗粒的停留时间具有一定的调控能力。
中图分类号:
兰斌, 徐骥, 刘志成, 王军武. 连续操作密相流化床颗粒停留时间分布特性模拟放大研究[J]. 化工学报, 2021, 72(1): 521-533.
LAN Bin, XU Ji, LIU Zhicheng, WANG Junwu. Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds[J]. CIESC Journal, 2021, 72(1): 521-533.
Diameter/μm | Mass fraction/% |
---|---|
251 418 640 | 38.3 53.2 8.5 |
表1 模拟所用颗粒代表粒径及其质量分数
Table 1 Representative particle sizes and their mass fractions used in simulations
Diameter/μm | Mass fraction/% |
---|---|
251 418 640 | 38.3 53.2 8.5 |
Parameter | Value |
---|---|
particle | |
density/(kg/m3) | 3135 |
Sauter mean particle diameter/μm | 341 |
minimum fluidization velocity/(m/s) | 0.095 |
voidage at the minimum fluidization condition | 0.48 |
sphericity | 0.65 |
mass flow rate of solids at the solid inlet/(g/s) | 5.3 |
Young’s modulus/Pa | 1×107 |
Poisson’s ratio | 0.3 |
characteristic velocity/(m/s) | 1 |
coefficient of restitution | 0.95 |
coefficient of friction | 0.3 |
coefficient of rolling friction/mm | 0.05 |
coarse-graining ratio | 5 |
time step/s | 1×10-5 |
gas | |
density/(kg/m3) | 1.2 |
viscosity/(Pa·s) | 1.8×10-5 |
gas grid size/mm | 5 |
superficial gas velocity/(m/s) | 0.4 |
time step/s | 1×10-4 |
operating pressure/Pa | 101325 |
表2 模拟参数和气体、颗粒物性
Table 2 Simulation parameters for fluidized bed and properties of gas and particles
Parameter | Value |
---|---|
particle | |
density/(kg/m3) | 3135 |
Sauter mean particle diameter/μm | 341 |
minimum fluidization velocity/(m/s) | 0.095 |
voidage at the minimum fluidization condition | 0.48 |
sphericity | 0.65 |
mass flow rate of solids at the solid inlet/(g/s) | 5.3 |
Young’s modulus/Pa | 1×107 |
Poisson’s ratio | 0.3 |
characteristic velocity/(m/s) | 1 |
coefficient of restitution | 0.95 |
coefficient of friction | 0.3 |
coefficient of rolling friction/mm | 0.05 |
coarse-graining ratio | 5 |
time step/s | 1×10-5 |
gas | |
density/(kg/m3) | 1.2 |
viscosity/(Pa·s) | 1.8×10-5 |
gas grid size/mm | 5 |
superficial gas velocity/(m/s) | 0.4 |
time step/s | 1×10-4 |
operating pressure/Pa | 101325 |
Bed | Average | Total pressure | Total pressure |
---|---|---|---|
length/m | holdups/kg | drop/kPa | drop (exp.)/kPa |
0.07 | 1.03 | 2.303 | — |
0.15 | 2.16 | 2.231 | 2.390 |
0.31 | 4.71 | 2.373 | — |
0.63 | 9.61 | 2.382 | — |
表3 不同尺寸流化床全床压降
Table 3 Total pressure drop of fluidized beds with different sizes
Bed | Average | Total pressure | Total pressure |
---|---|---|---|
length/m | holdups/kg | drop/kPa | drop (exp.)/kPa |
0.07 | 1.03 | 2.303 | — |
0.15 | 2.16 | 2.231 | 2.390 |
0.31 | 4.71 | 2.373 | — |
0.63 | 9.61 | 2.382 | — |
Bed length/m | Particle diameter/μm | Particle recovery rate/% | MRT of each particle/s | Total MRT/s | Total MRT(exp.)/s | |
---|---|---|---|---|---|---|
0.07 | 251 | 99.6 | 167.2 | 198.1 | — | 0.64 |
0.07 | 418 | 99.2 | 191.1 | |||
0.07 | 640 | 97.7 | 221.0 | |||
0.15 | 251 | 99.7 | 365.9 | 405.4 | 387.7 | 0.76 |
0.15 | 418 | 99.2 | 405.7 | |||
0.15 | 640 | 99.2 | 422.7 | |||
0.31 | 251 | 99.5 | 732.6 | 847.2 | — | 0.77 |
0.31 | 418 | 98.1 | 882.8 | |||
0.31 | 640 | 96.7 | 998.7 | |||
0.63 | 251 | 99.5 | 1458.9 | 1708.5 | — | 0.80 |
0.63 | 418 | 97.8 | 1822.2 | |||
0.63 | 640 | 97.0 | 2061.6 |
表4 不同尺寸流化床颗粒平均停留时间
Table 4 Particle MRT of fluidized beds with different scale
Bed length/m | Particle diameter/μm | Particle recovery rate/% | MRT of each particle/s | Total MRT/s | Total MRT(exp.)/s | |
---|---|---|---|---|---|---|
0.07 | 251 | 99.6 | 167.2 | 198.1 | — | 0.64 |
0.07 | 418 | 99.2 | 191.1 | |||
0.07 | 640 | 97.7 | 221.0 | |||
0.15 | 251 | 99.7 | 365.9 | 405.4 | 387.7 | 0.76 |
0.15 | 418 | 99.2 | 405.7 | |||
0.15 | 640 | 99.2 | 422.7 | |||
0.31 | 251 | 99.5 | 732.6 | 847.2 | — | 0.77 |
0.31 | 418 | 98.1 | 882.8 | |||
0.31 | 640 | 96.7 | 998.7 | |||
0.63 | 251 | 99.5 | 1458.9 | 1708.5 | — | 0.80 |
0.63 | 418 | 97.8 | 1822.2 | |||
0.63 | 640 | 97.0 | 2061.6 |
1 | Kunii D, Levenspiel O. Fluidization Engineering[M]. 2nd ed. Boston: Butterworth Heinemann, 1991: 159-234. |
2 | 孔大力, 罗坤, 林俊杰, 等. 双流化床生物质气化的三维全循环数值模拟[J]. 化工学报, 2019, 70(8): 3167-3176. |
Kong D L, Luo K, Lin J J, et al. Three-dimensional full-loop simulation of biomass gasification in dual fluidized bed[J]. CIESC Journal, 2019, 70(8): 3167-3176. | |
3 | Yang Y, Xu J, Liu Z Y, et al. Progress in coal chemical technologies of China[J]. Review in Chemical Engineering, 2020, 36: 21-66. |
4 | Diez E, Meyer K, Bück A, et al. Influence of process conditions on the product properties in a continuous fluidized bed spray granulation process[J]. Chemical Engineering Research and Design, 2018, 139: 104-115. |
5 | 刘沁雯, 钟文琪, 邵应娟, 等. 固体燃料流化床富氧燃烧的研究动态与进展[J]. 化工学报, 2019, 70(10): 3791-3807. |
Liu Q W, Zhong W Q, Shao Y J, et al. Research trends and recent advances of oxy-fuel combustion of solid fuels in fluidized beds[J]. CIESC Journal, 2019, 70(10): 3791-3807. | |
6 | Verma V, Padding J T, Deen N G, et al. Effect of bed size on hydrodynamics in 3D gas-solid fluidized beds[J]. AIChE Journal, 2015, 61(5): 1492-1506. |
7 | Che Y, Tian Z, Liu Z, et al. CFD prediction of scale-up effect on the hydrodynamic behaviors of a pilot-plant fluidized bed reactor and preliminary exploration of its application for non-pelletizing polyethylene process[J]. Powder Technology, 2015, 278: 94-110. |
8 | Couto N, Silva V B, Bispo C, et al. From laboratorial to pilot fluidized bed reactors: analysis of the scale-up phenomenon[J]. Energy Conversion & Management, 2016, 119: 177-186. |
9 | Lu B N, Zhang J Y, Luo H, et al. Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors[J]. Chemical Engineering Science, 2017, 171: 244-255. |
10 | Zhang Y, Jia Y, Xu J, et al. CFD intensification of coal beneficiation process in gas-solid fluidized beds[J]. Chemical Engineering & Processing: Process Intensification, 2020, 148: 107825. |
11 | Gu J R, Liu Q W, Zhong W Q, et al. Study on scale-up characteristics of oxy-fuel combustion in circulating fluidized bed boiler by 3D CFD simulation[J]. Advanced Powder Technology, 2020, 31: 2136-2151. |
12 | 白书培, 康仕芳. 大颗粒流化床停留时间分布的研究[J]. 化肥工业, 2002, 29(2): 33-36. |
Bai S P, Kang S F. Study of residence time distribution of large granules in fluid-bed[J]. Chemical Fertilizer Industry, 2002, 29(2): 33-36. | |
13 | 高巍, 张聚伟, 汪印, 等. 连续进出料鼓泡流化床颗粒停留时间分布[J]. 过程工程学报, 2012, 12(1): 9-13. |
Gao W, Zhang J W, Wang Y, et al. Residence time distribution of particles in a bubbling fluidized bed with their continuous input and output[J]. The Chinese Journal of Process Engineering, 2012, 12(1): 9-13. | |
14 | Matheson G L, Herbst W A, Holt P H. Characteristics of fluid-solid systems[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1098-1104. |
15 | Cai R R, Zhang Y G, Li Q H, et al. Experimental characterizing the residence time distribution of large spherical objects immersed in a fluidized bed[J]. Powder Technology, 2014, 254(4): 22-29. |
16 | Li L, Remmelgas J, van Wachem B G M, et al. Residence time distributions of different size particles in the spray zone of a Wurster fluid bed studied using DEM-CFD[J]. Powder Technology, 2015, 280: 124-134. |
17 | Yagi S, Kunii D. Fluidized-solids reactors with continuous solids feed (Ⅲ): Conversion in experimental fluidized-solids reactors[J]. Chemical Engineering Science, 1961, 16(3/4): 380-391. |
18 | 郝志刚, 朱庆山, 李洪钟. 内构件流化床内颗粒停留时间分布及压降的研究[J]. 过程工程学报, 2006, 6(z2): 359-363. |
Hao Z G, Zhu Q S, Li H Z. Particle residence time and pressure drop in a fluidized bed with internals[J]. The Chinese Journal of Process Engineering, 2006, 6(z2): 359-363. | |
19 | Geng S, Qian Y, Zhan J, et al. Prediction of solids residence time distribution in cross-flow bubbling fluidized bed[J]. Powder Technology, 2017, 320: 555-564. |
20 | Zou Z, Zhao Y, Zhao H, et al. Hydrodynamic and solids residence time distribution in a binary bubbling fluidized bed: 3D computational study coupled with the structure-based drag model[J]. Chemical Engineering Journal, 2017, 321: 184-194. |
21 | Zou Z, Zhao Y, Zhao H, et al. CFD simulation of solids residence time distribution in a multi-compartment fluidized bed[J]. Chinese Journal of Chemical Engineering, 2017, 25 (12): 1706-1713. |
22 | Hua L N, Zhao H, Li J H, et al. Solid residence time distribution in a cross-flow dense fluidized bed with baffles[J]. Chemical Engineering Science, 2019, 200: 320-335. |
23 | Zou Z, Zhao Y L, Zhao H, et al. Numerical analysis of residence time distribution of solids in a bubbling fluidized bed based on the modified structure-based drag model[J]. Particuology, 2017, 32: 30-38. |
24 | Hua L N, Wang J, Li J, et al. CFD simulation of solids residence time distribution in a CFB riser[J]. Chemical Engineering Science, 2014, 117: 264-282. |
25 | Börner M, Bück A, Tsotsas E. DEM-CFD investigation of particle residence time distribution in top-spray fluidised bed granulation[J]. Chemical Engineering Science, 2017, 161: 187-197. |
26 | Zhao Y Z, Cheng Y, Wu C N, et al. Eulerian-Lagrangian simulation of distinct clustering phenomena and RTDs in riser and downer[J]. Particuology, 2010, 8 (1): 44-50. |
27 | Lu L Q, Xu J, Ge W, et al. Computer virtual experiment on fluidized beds using a coarse-grained discrete particle method: EMMS-DPM[J]. Chemical Engineering Science, 2016, 155: 314-337. |
28 | Lan X Y, Shi X G, Zhang Y H, et al. Solids back-mixing behavior and effect of the mesoscale structure in CFB risers[J]. Industrial & Engineering Chemistry Research, 2013, 52 (34): 11888-11896. |
29 | Shi X G, Wu Y Y, Lan X Y, et al. Effects of the riser exit geometries on the hydrodynamics and solids back-mixing in CFB risers: 3D simulation using CPFD approach[J]. Powder Technology, 2015, 284: 130-142. |
30 | Hua L N, Wang J W. Residence time distribution of particles in circulating fluidized bed risers[J]. Chemical Engineering Science, 2018, 186: 168-190. |
31 | Nikku M, Jalali P, Ritvanen J, et al. Characterization method of average gas-solid drag for regular and irregular particle groups[J]. Powder Technology, 2014, 253: 284-294. |
32 | Zastawny M, Mallouppas G, Zhao F, et al. Derivation of drag and lift force and torque coefficients for non-spherical particles in flows[J]. International Journal of Multiphase Flow, 2012, 39: 227-239. |
33 | Hua L N, Zhao H, Li J H, et al. Eulerian-Eulerian simulation of irregular particles in dense gas-solid fluidized beds[J]. Powder Technology, 2015, 284: 299-311. |
34 | Zhou Z Y, Pinson D, Zou R P, et al. Discrete particle simulation of gas fluidization of ellipsoidal particles[J]. Chemical Engineering Science, 2011, 66(23): 6128-6145. |
35 | Liu B Q, Zhang X H, Wang L G, et al. Fluidization of non-spherical particles: sphericity, zingg factor and other fluidization parameters[J]. Particuology, 2008, 2: 74-78. |
36 | Grace J, Sun G. Influence of particle size distribution on the performance of fluidized bed reactors[J]. The Canadian Journal of Chemical Engineering, 1991, 69(5): 1126-1134. |
37 | Chew J W, Wolz J R, Hrenya C M. Axial segregation in bubbling gas-fluidized beds with Gaussian and lognormal distributions of Geldart group B particles[J]. AIChE Journal, 2010, 56(12): 3049-3061. |
38 | Hu C Q, He Y F, Liu D F, et al. Advances in mineral processing technologies related to iron, magnesium, and lithium[J]. Reviews in Chemical Engineering, 2019, 36(1): 107-146. |
39 | Lan B, Xu J, Zhao P, et al. Long-time coarse-grained CFD-DEM simulation of residence time distribution of polydisperse particles in a continuously operated multiple-chamber fluidized bed[J]. Chemical Engineering Science, 2020, 219: 115599. |
40 | Lu L Q, Xu J, Ge W, et al. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J]. Chemical Engineering Science, 2014, 120: 67-87. |
41 | Zhong W Q, Zhang Y, Jin B S, et al. Discrete element method simulation of cylinder-shaped particle flow in a gas-solid fluidized bed[J]. Chemical Engineering & Technology, 2009, 32: 386-391. |
42 | Peng L, Xu J, Zhu Q S, et al. GPU-based discrete element simulation on flow regions of flat bottomed cylindrical hopper[J]. Powder Technology, 2016, 304: 218-228. |
43 | Lu G, Third J R, Müller C R. Discrete element models for non-spherical particle systems: from theoretical developments to applications[J]. Chemical Engineering Science, 2015, 127: 425-465. |
44 | Michaelides E. Particles, Bubbles and Drops: Their Motion, Heat and Mass Transfer[M]. Singapore: World Scientific, 2006: 172-175. |
45 | Di Felice R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1): 153-159. |
46 | Beetstra R, van der Hoef M A, Kuipers J A M. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres[J]. AIChE Journal, 2007, 53(2): 489-501. |
47 | Zhou Q, Wang J W. CFD study of mixing and segregation in CFB risers: extension of EMMS drag model to binary gas-solid flow[J]. Chemical Engineering Science, 2015, 122: 637-651. |
48 | Fitzgerald T, Bushnell D, Crane S, et al. Testing of cold scaled bed modeling for fluidized-bed combustors[J]. Powder Technology, 1984, 35: 107-120. |
49 | Di Felice R, Rapagnà S, Foscolo P U. Dynamic similarity rules: validity check for bubbling and slugging fluidized beds[J]. Powder Technology, 1992, 71(3): 281-287. |
50 | Di Felice R, Rapagnà S, Foscolo P U, et al. Cold modelling studies of fluidised bed reactors[J]. Chemical Engineering Science, 1992, 47(9): 2233-2238. |
51 | Stein M J, Ding Y L, Seville J P K. Experimental verification of the scaling relationships for bubbling gas-fluidised beds using the PEPT technique[J]. Chemical Engineering Science, 2002, 57(17): 3649-3658. |
52 | Song Y, Feng J, Jia Y, et al. Influence of ash agglomerating fluidized bed reactor scale-up on coal gasification characteristics[J]. AIChE Journal, 2014, 60(5): 1821-1829. |
53 | Sanderson P J, Lim K S, Sidorenko I, et al. Hydrodynamic similarity in bubbling fluidized beds: the importance of the solid-to-gas density ratio[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5466-5473. |
54 | Sanderson J, Rhodes M. Bubbling fluidized bed scaling laws: evaluation at large scales[J]. Particle Technology and Fluidization, 2005, 51(10): 2686-2694. |
55 | Ommen J R V, Teuling M, Nijenhuis J, et al. Computational validation of the scaling rules for fluidized beds[J]. Powder Technology, 2006, 163(1/2): 32-40. |
56 | Glicksman L R. Scaling relationship for fluidized beds[J]. Chemical Engineering Science, 1984, 39: 1373-1379. |
57 | Glicksman L R, Hyre M, Woloshun K. Simplified scaling relationships for fluidized beds[J]. Powder Technology, 1993, 77: 177-199. |
58 | Horio M, Nonaka A, Sawa Y, et al. A new similarity rule for fluidized bed scale-up[J]. AIChE Journal, 1986, 32(9): 1466-1482. |
59 | 赵虎. 流化床中不同粒径颗粒停留时间及其分布的调控研究[D]. 北京: 中国科学院大学, 2017. |
Zhao H. Modulating the residence time and distribution of particles with different sizes in fluidized beds[D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
60 | Volk W, Johnson C A, Stotler H H. Effect of reactor internals on quality of fluidization[J]. Chemical Engineering Progress, 1962, 58(3): 44-47. |
61 | Murray J A, Benyahia S, Metzger P, et al. Continuum representation of a continuous size distribution of particles engaged in rapid granular flow[J]. Physics of Fluids, 2012, 24: 083303. |
62 | Qin Z Y, Zhou Q, Wang J W. An EMMS drag model for coarse grid simulation of polydisperse gas-solid flow in circulating fluidized bed risers[J]. Chemical Engineering Science, 2019, 207: 358-378. |
63 | Wen C Y, Yu Y H. A generalized method for predicting the minimum fluidization velocity[J]. AIChE Journal, 1966, 12: 610-612. |
64 | Wang J W, van der Hoef M A, Kuipers J A M. Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: a tentative answer[J]. Chemical Engineering Science, 2009, 64(3): 622-625. |
65 | Wang J W, van der Hoef M A, Kuipers J A M. CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds[J]. Chemical Engineering Science, 2010, 65(12): 3772-3785. |
66 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
67 | Wang J W, van der Hoef M A, Kuipers J A M. Coexistence of solidlike and fluidlike states in a deep gas-fluidized bed[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5279-5287. |
68 | Glicksman L R, McAndrews G. The effect of bed width on the hydrodynamics of large particle fluidized beds[J]. Powder Technology, 1985, 42: 159-167. |
[1] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[2] | 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707. |
[3] | 赵晶, 李伯耿, 卜志扬, 范宏. 微通道内低黏聚合物流体的停留时间分布研究[J]. 化工学报, 2021, 72(8): 4030-4038. |
[4] | 胡丹丹, 耿素龙, 曾玺, 王芳, 岳君容, 许光文. 返混对气-固反应特性测试和活化能表征的影响[J]. 化工学报, 2021, 72(3): 1354-1363. |
[5] | 黄正梁, 王超, 郭燕妮, 杨遥, 孙婧元, 王靖岱, 阳永荣. 基于停留时间分布的缠绕管内二次流研究[J]. 化工学报, 2021, 72(2): 921-927. |
[6] | 王冠球, 林冠屹, 朱春英, 付涛涛, 马友光. 微通道反应器的一维放大及气液传质特性[J]. 化工学报, 2021, 72(2): 937-944. |
[7] | 邓传富,汪伟,谢锐,巨晓洁,刘壮,褚良银. 液滴微流控的集成化放大方法研究进展[J]. 化工学报, 2021, 72(12): 5965-5974. |
[8] | 田朋,王德武,王若瑾,唐猛,郝晓磊,张少峰. 摇摆流化床的气固流动特性[J]. 化工学报, 2021, 72(10): 5102-5113. |
[9] | 田凤国, 朱田, 孔德正, 雷鸣. 非均匀布风流化床内大颗粒停留时间特性[J]. 化工学报, 2020, 71(4): 1520-1527. |
[10] | 崔永晋, 李严凯, 王凯, 邓建, 骆广生. 微分散设备数量放大方式研究进展[J]. 化工学报, 2020, 71(10): 4350-4364. |
[11] | 闫磊, 陈思宇, 肖美良子, 丁伟. 煤制烯烃基长链烷基二甲苯合成研究[J]. 化工学报, 2019, 70(S1): 235-241. |
[12] | 周云龙, 卢志叶, 王猛. 基于递归分析的喷雾气固流化床团聚状态识别[J]. 化工学报, 2018, 69(9): 3835-3842. |
[13] | 姚东, 刘明言, 李翔南. 小型气-液-固流化床液相的停留时间分布[J]. 化工学报, 2018, 69(11): 4754-4762. |
[14] | 沈秋颖, Tahir Muhammad Faran, Cumbula Armando José, 付涛涛, 姜韶堃, 朱春英, 马友光. 对称分支并行微通道中气液两相流的均匀性规律[J]. 化工学报, 2018, 69(11): 4640-4647. |
[15] | 周虹佳, 刘飞, 周明, 仲兆祥, 邢卫红. 双膜强化类Fenton工艺处理制浆废水的研究[J]. 化工学报, 2018, 69(1): 490-498. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 497
|
|
|||||||||||||||||||||||||||||||||
摘要 651
|
|
|||||||||||||||||||||||||||||||||