化工学报 ›› 2021, Vol. 72 ›› Issue (1): 508-520.DOI: 10.11949/0438-1157.20201192
收稿日期:
2020-08-20
修回日期:
2020-12-02
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
吉远辉
作者简介:
吉远辉(1982—),女,博士,教授,基金资助:
JI Yuanhui(),CHEN Qiao,WENG Jingyun
Received:
2020-08-20
Revised:
2020-12-02
Online:
2021-01-05
Published:
2021-01-05
Contact:
JI Yuanhui
摘要:
探究聚合物辅料对难溶性药物结晶的影响机制,是指导无定形固体分散体制剂设计和制备中辅料筛选的关键。研究了不同因素(温度、搅拌速率、聚合物浓度、聚合物分子量和聚合物种类等)对阿司匹林晶体生长动力学的影响。首先,采用基于三种不同晶体生长机制的化学势梯度模型结合UNIQUAC活度系数模型,描述和预测了阿司匹林在不同条件下的结晶动力学。进一步分析了不同因素对晶体生长速率常数
中图分类号:
吉远辉, 陈俏, 翁靖云. 聚合物辅料对阿司匹林结晶动力学影响机制的非平衡热力学建模及预测[J]. 化工学报, 2021, 72(1): 508-520.
JI Yuanhui, CHEN Qiao, WENG Jingyun. Nonequilibrium thermodynamic modeling and prediction of the effect of polymer excipients on aspirin crystallization kinetics[J]. CIESC Journal, 2021, 72(1): 508-520.
Substance | ri | qi | Vm/(cm3/mol) |
---|---|---|---|
aspirin | 6.06 | 4.792 | 133.45 |
water | 0.92 | 1.4 | 18.01 |
PEG 6000 | 153.57 | 122.86 | 5244.76 |
PEG 400 | 10.41 | 8.33 | 355.40 |
PVP K25 | 614.29 | 491.43 | 20979.02 |
HPMC E3 | 128.33 | 102.66 | 4382.73 |
表1 不同物质的基团贡献参数[29]
Table 1 Group contribution parameters of different substances[29]
Substance | ri | qi | Vm/(cm3/mol) |
---|---|---|---|
aspirin | 6.06 | 4.792 | 133.45 |
water | 0.92 | 1.4 | 18.01 |
PEG 6000 | 153.57 | 122.86 | 5244.76 |
PEG 400 | 10.41 | 8.33 | 355.40 |
PVP K25 | 614.29 | 491.43 | 20979.02 |
HPMC E3 | 128.33 | 102.66 | 4382.73 |
聚合物 | u12-u22/ (J/mol) | u21-u11/(J/mol) | u13-u33/(J/mol) | u31-u11/(J/mol) | u23-u33/(J/mol) | u32-u22/(J/mol) |
---|---|---|---|---|---|---|
水 | 1550.6 | -478.0 | — | — | — | — |
PEG6000 | -863.6 | 1204.0 | -1095.3 | 2093.6 | 6499.4 | 693.9 |
PEG400 | -3519.8 | 527.7 | -70.3 | 793.5 | 19384.3 | -3247.7 |
PVP K25 | -388.8 | 404.2 | -344.9 | 966.5 | 8917.7 | 290.1 |
HPMC E3 | 5281.8 | 9436.2 | 11811.2 | -1986.7 | 6731.0 | -5450.8 |
表2 阿司匹林体系中UNIQUAC模型相互作用参数[29]
Table 2 Interaction parameters of UNIQUAC model for aspirin[29]
聚合物 | u12-u22/ (J/mol) | u21-u11/(J/mol) | u13-u33/(J/mol) | u31-u11/(J/mol) | u23-u33/(J/mol) | u32-u22/(J/mol) |
---|---|---|---|---|---|---|
水 | 1550.6 | -478.0 | — | — | — | — |
PEG6000 | -863.6 | 1204.0 | -1095.3 | 2093.6 | 6499.4 | 693.9 |
PEG400 | -3519.8 | 527.7 | -70.3 | 793.5 | 19384.3 | -3247.7 |
PVP K25 | -388.8 | 404.2 | -344.9 | 966.5 | 8917.7 | 290.1 |
HPMC E3 | 5281.8 | 9436.2 | 11811.2 | -1986.7 | 6731.0 | -5450.8 |
结晶条件 | 平衡浓度/(g/L) | 生长机制 | ARD/% |
---|---|---|---|
纯水溶液,283.15 K,200 r/min | 2.11 | 粗糙生长机制 | 4.32 |
纯水溶液,288.15 K,200 r/min | 2.74 | 粗糙生长机制 | 3.43 |
纯水溶液,288.15 K,100 r/min | 2.74 | 粗糙生长机制 | 3.86 |
2% PEG 6000水溶液,288.15 K,200 r/min | 3.22 | 粗糙生长机制 | 1.93 |
5% PEG 6000水溶液,288.15 K,200 r/min | 3.59 | 粗糙生长机制 | 1.21 |
2% PEG 400水溶液,288.15 K,200 r/min | 3.11 | 粗糙生长机制 | 1.50 |
2% HPMC E3水溶液,288.15 K,200 r/min | 4.33 | 二维成核生长机制 | 0.76 |
2% PVP K25水溶液,288.15 K,200 r/min | 4.13 | 二维成核生长机制 | 0.61 |
表3 阿司匹林在不同条件下的平衡浓度、生长机理及计算值和实验值之间的平均相对偏差
Table 3 The equilibrium concentration and growth mechanism of aspirin under different crystallization conditions and the ARD between the calculated and experimental values
结晶条件 | 平衡浓度/(g/L) | 生长机制 | ARD/% |
---|---|---|---|
纯水溶液,283.15 K,200 r/min | 2.11 | 粗糙生长机制 | 4.32 |
纯水溶液,288.15 K,200 r/min | 2.74 | 粗糙生长机制 | 3.43 |
纯水溶液,288.15 K,100 r/min | 2.74 | 粗糙生长机制 | 3.86 |
2% PEG 6000水溶液,288.15 K,200 r/min | 3.22 | 粗糙生长机制 | 1.93 |
5% PEG 6000水溶液,288.15 K,200 r/min | 3.59 | 粗糙生长机制 | 1.21 |
2% PEG 400水溶液,288.15 K,200 r/min | 3.11 | 粗糙生长机制 | 1.50 |
2% HPMC E3水溶液,288.15 K,200 r/min | 4.33 | 二维成核生长机制 | 0.76 |
2% PVP K25水溶液,288.15 K,200 r/min | 4.13 | 二维成核生长机制 | 0.61 |
1 | Baghel S, Cathcart H, O'Reilly N J. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class Ⅱ drugs[J]. Journal of Pharmaceutical Sciences, 2016, 105(9): 2527-2544. |
2 | Yasir M, Asif M, Kumar A, et al. Biopharmaceutical classification system: an account[J]. International Journal of Pharmtech Research, 2010, 2(3): 1681-1690. |
3 | Marsac P J, Li T L, Taylor L S. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters[J]. Pharmaceutical Research, 2009, 26(1): 139-151. |
4 | Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions[J]. Journal of Pharmaceutical Sciences, 2012, 101(4): 1355-1377. |
5 | Sun D D, Ju T C R, Lee P I. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels[J]. European Journal of Pharmaceutics & Biopharmaceutics, 2012, 81(1): 149-158. |
6 | Tran P H L, Duan W, Lee B J, et al. Modulation of drug crystallization and molecular interactions by additives in solid dispersions for improving drug bioavailability[J]. Current Pharmaceutical Design, 2019, 25(18): 2099-2107. |
7 | 吕江维, 孙晗, 魏亚青, 等. 介孔硅材料提高难溶性药物生物利用度的研究进展[J]. 药学研究, 2018, 37(6): 361-364. |
Lyu J W, Sun H, Wei Y Q, et al. Research progress of mesoporous silicon materials for improving bioavailability of insoluble drugs[J]. Journal of Pharmaceutical Research, 2018, 37(6): 361-364. | |
8 | Zhu Q, Harris M T, Taylor L S. Modification of crystallization behavior in drug/polyethylene glycol solid dispersions[J]. Molecular Pharmaceutics, 2012, 9(3): 546-553. |
9 | Gruberova L, Kratochvil B. Solid dispersions of poorly water soluble drug[J]. Chemicke Listy, 2019, 113(6): 383-390. |
10 | Huang Y B, Dai W G. Fundamental aspects of solid dispersion technology for poorly soluble drugs[J]. Acta Pharmaceutica Sinica B, 2014, 4(1): 18-25. |
11 | 赵绍磊, 王耀国, 张腾, 等. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474. |
Zhao S L, Wang Y G, Zhang T, et al. Advanced process control of pharmaceutical crystallization[J]. CIESC Journal, 2020, 71(2): 459-474. | |
12 | Zhou L, Wang Z, Zhang M J, al et, Determination of metastable zone and induction time of analgin for cooling crystallization[J]. Chinese Journal of Chemical Engineering, 2017, 25(3): 313-318. |
13 | 张璐, 马丹阳, 唐星, 等. 高载药量尼莫地平无定形固体分散体溶出及稳定性研究[J]. 中国药剂学杂志, 2020, 18(1): 38-48. |
Zhang L, Ma D Y, Tang X, et al. Dissolution and stability of high-loaded nimodipine amorphous solid dispersion[J]. Chinese Journal of Pharmaceutics, 2020, 18(1): 38-48. | |
14 | Liu H, Taylor L S, Edgar K J. The role of polymers in oral bioavailability enhancement: a review[J]. Polymer, 2015, 77: 399-415. |
15 | Ji Y H, Paus R, Prudic A, et al. A novel approach for analyzing the dissolution mechanism of solid dispersions[J]. Pharmaceutical Research, 2015, 32(8): 2559-2578. |
16 | Baird J A, Taylor L S. Evaluation of amorphous solid dispersion properties using thermal analysis techniques[J]. Advanced Drug Delivery Reviews, 2012, 64(5): 396-421. |
17 | Schram C J, Smyth R J, Taylor L S, et al. Understanding crystal growth kinetics in the absence and presence of a polymer using a rotating disk apparatus[J]. Crystal Growth & Design, 2016, 16(5): 2640-2645. |
18 | Schram C J, Taylor L S, Beaudoin S P. Influence of polymers on the crystal growth rate of felodipine: correlating adsorbed polymer surface coverage to solution crystal growth inhibition[J]. Langmuir, 2015, 31(41): 11279-11287. |
19 | Ishizuka Y, Ueda K, Okada H, et al. Effect of drug-polymer interactions through HPMC-AS substituents on the physical stability of solid dispersions studied by FTIR and solid-state NMR[J]. Molecular Pharmaceutics, 2019, 16(6): 2785-2794. |
20 | Bhardwaj S P, Arora K K, Kwong E, et al. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility[J]. Molecular Pharmaceutics, 2014, 11(11): 4228-4237. |
21 | 时念秋, 张勇, 冯波, 等. 通过溶解度法研究纤维素类聚合物抑制超饱和非洛地平结晶的特征[J]. 中国医院药学杂志, 2016, 36(24): 2152-2156. |
Shi N Q, Zhang Y, Feng B, et al. Investigation on inhibition of cellulose polymers against supersaturated felodipine crystallization by solubility method[J]. Chinese Journal of Hospital Pharmacy, 2016, 36(24): 2152-2156. | |
22 | Arioglu-Tuncil S, Bhardwaj V, Taylor L S, et al. Amorphization of thiamine chloride hydrochloride: a study of the crystallization inhibitor properties of different polymers in thiamine chloride hydrochloride amorphous solid dispersions[J]. Food Research International, 2017, 99: 363-374. |
23 | Paus R, Hart E, Ji Y H, et al. Solubility and caloric properties of cinnarizine[J]. Journal of Chemical & Engineering Data, 2015, 60(8): 2256-2261. |
24 | Sunagawa I. Crystals: Growth, Morphology, and Perfection[M]. Cambridge: Cambridge University Press, 2007: 43-46. |
25 | Roberts K J, Docherty R, Tamura R. Engineering Crystallography: from Molecule to Crystal to Functional Form[M]. Netherlands: Springer, 2017. |
26 | Weng J, Huang Y, Hao D, et al. Recent advances of pharmaceutical crystallization theories[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 935-948. |
27 | Ji Y, Lemberg M, Prudic A, et al. Modeling and analysis of dissolution of paracetamol/Eudragit ® formulations[J]. Chemical Engineering Research & Design, 2017, 121: 22-31. |
28 | Maurer G, Prausnitz J M. On the derivation and extension of the UNIQUAC equation[J]. Fluid Phase Equilibria, 1978, 2(2): 91-99. |
29 | Wu D X, Ji Y H. Influence of polymeric excipients on the solubility of aspirin: experimental measurement and model prediction[J]. Fluid Phase Equilibria, 2019, 508: 112450. |
30 | Vera J H, Sayegh S G, Ratcliff G A. A quasi lattice-local composition model for the excess Gibbs free energy of liquid mixtures[J]. Fluid Phase Equilibria, 1977, 1(2): 113-135. |
31 | Paus R, Ji Y H, Braak F, et al. Dissolution of crystalline pharmaceuticals: experimental investigation and thermodynamic modeling[J]. Industrial & Engineering Chemistry Research, 2015, 54(2): 731-742. |
32 | Prudic A, Ji Y H, Sadowski G. Thermodynamic phase behavior of API/polymer solid dispersions[J]. Molecular Pharmaceutics, 2014, 11(7): 2294-2304. |
33 | 李攀, 孔慧, 宋卓栋, 等. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71: 7-14. |
Li P, Kong H, Song Z D, et al. Vapor-liquid equilibrium for methanol-formaldehyde-polyoxymethylene dimethyl ethers ternary system[J]. CIESC Journal, 2020, 71: 7-14. | |
34 | Jakob A, Joh R, Rose C, et al. Solid-liquid equilibria in binary mixtures of organic compounds[J]. Fluid Phase Equilibria, 1995, 113(1/2): 117-126. |
35 | Fu D, Zhang P, Du L X, et al. Experiment and model for the viscosities of MEA-PEG400, DEA-PEG400 and MDEA-PEG400 aqueous solutions[J]. Journal of Chemical Thermodynamics, 2014, 78: 109-113. |
36 | Venkatramanan K, Padmanaban R, Acoustic Arumugam V., thermal and molecular interactions of polyethylene glycol (2000, 3000, 6000)[C]//Proceedings of the 2015 ICU International Congress on Ultrasonics. 2015: 1052-1056. |
37 | Bolten D, Turk M. Experimental study on the surface tension, density, and viscosity of aqueous poly(vinylpyrrolidone) solutions[J]. Journal of Chemical & Engineering Data, 2011, 56(3): 582-588. |
38 | Matsuda H, Mori K, Tomioka M, et al. Determination and prediction of solubilities of active pharmaceutical ingredients in selected organic solvents[J]. Fluid Phase Equilibria, 2015, 406: 116-123. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[2] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[3] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[4] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[5] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[6] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[7] | 蔡进, 王晓辉, 汤涵, 陈光进, 孙长宇. TBAB水溶液体系中半笼型水合物的相平衡预测模型[J]. 化工学报, 2023, 74(1): 408-415. |
[8] | 周桓, 张梦丽, 郝晴, 吴思, 李杰, 徐存兵. 硫酸镁型光卤石转化钾盐镁矾的过程机制与动态规律[J]. 化工学报, 2022, 73(9): 3841-3850. |
[9] | 马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究[J]. 化工学报, 2022, 73(9): 4103-4112. |
[10] | 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551. |
[11] | 姜焱龙, 张妮, 李淡然, 朱冰冰, 蒋怡晨, 陈海军, 朱跃钊. 基于COSMO-RS方法筛选离子液体用于焦油脱除[J]. 化工学报, 2022, 73(4): 1704-1713. |
[12] | 宋谦石, 王潇伟, 张威, 汪小憨, 李浩文, 乔瑜. 无机元素对生物质焦炭-CO2气化反应性的催化/抑制作用研究及模型构建[J]. 化工学报, 2022, 73(11): 5240-5250. |
[13] | 张牧星, 张小松, 丁烨, 宋翼. 氧化石墨烯膜间距对电渗析空气除湿特性影响的分子动力学研究[J]. 化工学报, 2021, 72(S1): 63-69. |
[14] | 徐健元, 吴艳阳, 徐菊美, 彭阳峰. 2 kPa下均三甲苯-偏三甲苯与均三甲苯-邻甲乙苯体系二元汽液相平衡数据研究及精馏模拟[J]. 化工学报, 2021, 72(9): 4504-4510. |
[15] | 陈志荣, 童云, 袁慎峰, 尹红. 蛋氨酸在KCl溶液中的解离常数与活度系数[J]. 化工学报, 2021, 72(9): 4469-4478. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 514
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 613
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||