化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4531-4543.DOI: 10.11949/0438-1157.20210304
收稿日期:
2021-03-01
修回日期:
2021-05-07
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
贾胜坤,袁希钢
作者简介:
王芳(1995—),女,硕士研究生,基金资助:
Fang WANG(),Shengkun JIA(),Huishu ZHANG,Xigang YUAN(),Kuotsung YU
Received:
2021-03-01
Revised:
2021-05-07
Online:
2021-09-05
Published:
2021-09-05
Contact:
Shengkun JIA,Xigang YUAN
摘要:
采用粒子成像测速(PIV)和激光诱导荧光(LIF)技术同时测量了水平通道中湍流扩散过程的流速和荧光剂浓度的瞬时分布,并利用实验数据,通过本征正交分解(POD)模态分析方法,实现了湍流条件下荧光剂扩散过程中浓度分布的数值重构。该方法应用于瞬时浓度分布的特征分析中,得到了瞬时分布的各阶模态,并分析各阶模态空间分布特征及其所含能量。结果表明,浓度分布在距离荧光剂入口较近的区域具有较强的周期性,且低阶POD模态能量占主导地位。应用POD分析得到的模态可以较准确地重构距离荧光剂入口较近区域的浓度分布的基本特征,相对误差主要集中于距离荧光剂入口较远的区域,表明本文提出的基于POD模态分析的湍流条件下浓度场的数值重构更适用于周期性较强的系统,为预测未知时刻的湍流扩散浓度分布提供了基础。
中图分类号:
王芳,贾胜坤,张会书,袁希钢,余国琮. 基于实验数据的湍流扩散POD模态分析[J]. 化工学报, 2021, 72(9): 4531-4543.
Fang WANG,Shengkun JIA,Huishu ZHANG,Xigang YUAN,Kuotsung YU. POD modal analysis of turbulent diffusion based on experimental data[J]. CIESC Journal, 2021, 72(9): 4531-4543.
图1 实验装置1,2—储水槽;3—潜水泵;4—荧光素钠溶液;5—隔膜泵;6,12—转子流量计;7—Nd:YAG激光器;8—片状透镜;9—反射镜;10—格栅;11—流体通道;13,14—CCD相机;15—计算机
Fig.1 Schematic diagram of experimental apparatus
图7 不同切面平均浓度分布轴向方向距离入口0~50 mm处平均浓度变化
Fig.7 The mean concentration distribution of different sections at 0 to 50 mm away from the outlet in the axial direction
1 | 余国琮, 袁希钢. 化工计算传质学导论[M]. 天津: 天津大学出版社, 2011: 263-327. |
Yu G C, Yuan X G. Introduction to Computational Mass Transfer [M]. Tianjin: Tianjin University Press, 2011: 263-327. | |
2 | Lemoine F, Wolff M, Lebouché M. Experimental investigation of mass transfer in a grid-generated turbulent flow using combined optical methods[J]. International Journal of Heat and Mass Transfer, 1997, 40(14): 3255-3266. |
3 | Lemoine F, Antoine Y, Wolff M, et al. Some experimental investigations on the concentration variance and its dissipation rate in a grid generated turbulent flow[J]. International Journal of Heat and Mass Transfer, 2000, 43(7): 1187-1199. |
4 | Funatani S, Fujisawa N, Ikeda H. Simultaneous measurement of temperature and velocity using two-colour LIF combined with PIV with a colour CCD camera and its application to the turbulent buoyant plume[J]. Measurement Science and Technology, 2004, 15(5): 983-990. |
5 | Sheng J, Meng H, Fox R O. A large eddy PIV method for turbulence dissipation rate estimation[J]. Chemical Engineering Science, 2000, 55(20): 4423-4434. |
6 | Lemoine F, Antoine Y, Wolff M, et al. Mass transfer properties in a grid generated turbulent flow: some experimental investigations about the concept of turbulent diffusivity[J]. International Journal of Heat and Mass Transfer, 1998, 41(15): 2287-2295. |
7 | Sun Z M, Yu K T, Yuan X G, et al. A modified model of computational mass transfer for distillation column[J]. Chemical Engineering Science, 2007, 62(7): 1839-1850. |
8 | Liu G B, Yu K T, Yuan X G, et al. A numerical method for predicting the performance of a randomly packed distillation column[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5330-5338. |
9 | Dong B, Yuan X G, Yu K T. Determination of liquid mass-transfer coefficients for the absorption of CO2 in alkaline aqueous solutions in structured packing using numerical simulations[J]. Chemical Engineering Research and Design, 2017, 124: 238-251. |
10 | Zhang C, Yuan X G, Luo Y Q, et al. Prediction of species concentration distribution using a rigorous turbulent mass diffusivity model for bubble column reactor simulation (Ⅰ): Application to chemisorption process of CO2 into NaOH solution[J]. Chemical Engineering Science, 2018, 184: 161-171. |
11 | Taira K, Kunihiko T, et al. Proper orthogonal decomposition in fluid flow analysis(Ⅰ): Introduction[J]. Journal of Japan Society of Fluid Mechanics(Nagare), 2011, 30(2):115-123. |
12 | Rowley C W. Model reduction for fluids, using balanced proper orthogonal decomposition[J]. International Journal of Bifurcation and Chaos, 2005, 15(3): 997-1013. |
13 | Kerschen G, Golinval J C, Vakakis A F, et al. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview[J]. Nonlinear Dynamics, 2005, 41(1/2/3): 147-169. |
14 | Zhang Q S, Liu Y Z. Influence of incident vortex street on separated flow around a finite blunt plate: PIV measurement and POD analysis[J]. Journal of Fluids and Structures, 2015, 55: 463-483. |
15 | Lacassagne T, Simoëns S, Hajem M EL, et al. POD analysis of oscillating grid turbulence in water and shear thinning polymer solution[J]. AIChE Journal, 2021, 67(1): e17044. |
16 | Taira K, Hemati M S, Brunton S L, et al. Modal analysis of fluid flows: applications and outlook[J]. AIAA Journal, 2020, 58(3): 998-1022. |
17 | Simoens S, Ayrault M. Concentration flux measurements of a scalar quantity in turbulent flows[J]. Experiments in Fluids, 1994, 16(3/4): 273-281. |
18 | Chang K C, Lee K H. Determination of mixing length in turbulent mixing layer on basis of vorticity field[J]. International Journal of Heat and Fluid Flow, 2017, 66: 121-126. |
19 | Hjertager L K, Hjertager B H, Deen N G, et al. Measurement of turbulent mixing in a confined wake flow using combined PIV and PLIF[J]. The Canadian Journal of Chemical Engineering, 2003, 81(6): 1149-1158. |
20 | 傅强, 张会书, 胡楠, 等. 水溶解CO2过程界面对流现象的PIV/LIF测量及传质系数预测[J]. 化工学报, 2018, 69(2): 586-594. |
Fu Q, Zhang H S, Hu N, et al. Simultaneous PIV/LIF measurements of interfacial convection during CO2 dissolution in water and prediction of mass transfer coefficient[J]. CIESC Journal, 2018, 69(2): 586-594. | |
21 | 曹艳华. 四维变分资料同化的降维方法及在海洋资料同化中的应用[D]. 北京: 首都师范大学, 2006. |
Cao Y H. Reducing dimension method of four dimensional variational data assimilation data assimilation and application in ocean data assimilation[D]. Beijing: Capital Normal University, 2006. | |
22 | 邱翔, 刘宇陆. 湍流的相干结构[J]. 自然杂志, 2004, 26(4): 187-193. |
Qiu X, Liu Y L. Turbulent coherent structure[J]. Nature Magazine, 2004, 26(4): 187-193. | |
23 | Qin W J, Xie M Z, Jia M, et al. Large eddy simulation and proper orthogonal decomposition analysis of turbulent flows in a direct injection spark ignition engine: cyclic variation and effect of valve lift[J]. Science China Technological Sciences, 2014, 57(3): 489-504. |
24 | de Lamotte A, Delafosse A, Calvo S, et al. Analysis of PIV measurements using modal decomposition techniques, POD and DMD, to study flow structures and their dynamics within a stirred-tank reactor[J]. Chemical Engineering Science, 2018, 178: 348-366. |
25 | Taira K, Brunton S L, Dawson S T M, et al. Modal analysis of fluid flows: an overview[J]. AIAA Journal, 2017, 55(12): 4013-4041. |
26 | Hall K C, Thomas J P, Dowell E H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows[J]. AIAA Journal, 2000, 38(10): 1853-1862. |
27 | Graftieaux L, Michard M, Grosjean N. Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows[J]. Measurement Science and Technology, 2001, 12(9): 1422-1429. |
28 | Rowley C W, Colonius T, Murray R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D: Nonlinear Phenomena, 2004, 189(1/2): 115-129. |
29 | Towne A, Schmidt O T, Colonius T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[J]. Journal of Fluid Mechanics, 2018, 847: 821-867. |
30 | Berger J, Guernouti S, Woloszyn M. Evaluating model reduction methods for heat and mass transfer in porous materials: proper orthogonal decomposition and proper generalized decomposition[J]. Journal of Porous Media, 2019, 22(3): 363-385. |
31 | 赵朋龙, 陈耀慧, 董刚, 等. 基于本征正交分解的湍流边界层中条带结构实验研究[J]. 南京理工大学学报(自然科学版), 2019, 43(6):752-758. |
Zhao P L, Chen Y H, Dong G, et al. Experimental study on streaky structures in turbulent boundary layer based on POD[J]. Journal of Nanjing University of Science and Technology, 2019, 43(6):752-758. | |
32 | Berkooz G, Holmes P, Lumley J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 539-575. |
33 | Colonius T, Freund J B. Reconstruction of large-scale structures and acoustic radiation from a turbulent M = 0.9 jet using proper orthogonal decomposition[C]//Ninth European Turbulence Conference. 2002. |
[1] | 李文金, 周勇军, 袁名岳, 何华, 孙建平. 几种框式桨搅拌槽内流动特性的比较研究[J]. 化工学报, 2021, 72(4): 1998-2005. |
[2] | 张超, 刘有智, 焦纬洲, 张巧玲. 内循环气升式环流反应器生物降解苯酚废水过程的计算传质学模拟研究[J]. 化工学报, 2021, 72(2): 965-974. |
[3] | 张航,张巍,李伟锋,刘海峰,王辅臣. T型反应器内流动、混合及界面反应特征[J]. 化工学报, 2021, 72(10): 5064-5073. |
[4] | 杨锋苓, 张翠勋, 李美婷. 柔性Rushton搅拌桨混合性能的实验研究[J]. 化工学报, 2020, 71(2): 626-632. |
[5] | 傅强, 张会书, 胡楠, 袁希钢, 余国琮. 水溶解CO2过程界面对流现象的PIV/LIF测量及传质系数预测[J]. 化工学报, 2018, 69(2): 586-594. |
[6] | 刘海龙, 曹宇, 丁学翀, 毛宝东, 王悦柔, 王军锋. 搅拌槽内液相层流荧光可视化及高效混合技术[J]. 化工学报, 2018, 69(12): 5042-5048. |
[7] | 胡楠, 张会书, 傅强, 李陆星, 袁希钢. 气相第2组分对水溶解CO2过程界面对流影响的LIF观测[J]. 化工学报, 2017, 68(2): 584-593. |
[8] | 李陆星, 胡楠, 袁希钢. 水吸收CO2过程界面对流的激光诱导荧光观测[J]. 化工学报, 2016, 67(10): 4055-4063. |
[9] | 杜柯江, 李伟锋, 单志昊, 刘海峰, 王辅臣. 小型受限撞击流反应器内混合特征及激励强化[J]. 化工学报, 2015, 66(7): 2395-2401. |
[10] | 张建伟, 马红越, 董鑫, 冯颖. 水平对置双向液体撞击流的振荡特性[J]. 化工学报, 2015, 66(4): 1310-1317. |
[11] | 张会书, 袁希钢, Kalbassi Mohammad Ali. 激光诱导荧光技术测量规整填料内的液体分布[J]. 化工学报, 2014, 65(9): 3331-3339. |
[12] | 张会书, 袁希钢, Kalbassi Mohammad Ali. 激光诱导荧光技术测量规整填料内的液体分布[J]. 化工学报, 2014, 65(9): 0-0. |
[13] | 骆培成, 吴俊, 辛传贤, 贾海燕. 多孔错流喷射混合器内液体射流轨迹线[J]. 化工学报, 2014, 65(7): 2733-2740. |
[14] | 赵述芳, 王文坦, 胡银玉, 邵婷, 金涌, 程易. 搅拌釜内液-液混合溶析沉淀法制备纳米姜黄素颗粒[J]. 化工学报, 2013, 64(3): 841-848. |
[15] | 王文坦, 张梦雪, 赵述芳, 刘喆, 金涌, 程易. 激光诱导荧光技术在液体混合可视化研究中的应用[J]. 化工学报, 2013, 64(3): 771-778. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||