化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3247-3257.DOI: 10.11949/0438-1157.20191126
收稿日期:
2019-11-20
修回日期:
2020-02-27
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
卫东
作者简介:
王茹(1969—),女,本科,工程师,基金资助:
Ru WANG1(),Yongchao SHEN2,Dong WEI2(
),Qian GUO2
Received:
2019-11-20
Revised:
2020-02-27
Online:
2020-07-05
Published:
2020-07-05
Contact:
Dong WEI
摘要:
基于Randles等效电路,研究质子交换膜燃料电池(PEMFC)操作温度和湿度耦合关系,建立电堆直流内阻和交流阻抗特性模型。通过两种方法相结合,研究不同操作条件下的电化学阻抗谱图和U-I输出特性曲线的变化规律,以及不同水管理状态在直流内阻和交流阻抗变化规律中体现出的对应关系,进而分析水管理状态对电堆输出性能的影响作用。仿真和实验结果表明,温湿度耦合关系下的不同水管理状态,在电化学阻抗谱图和U-I特性曲线中具有一致的变化规律和对应的量化关系;电堆输出性能中的膜干、水淹等现象,在直流内阻值和交流阻抗图的变化中具有明显的表现特征;通过研究水管理状态对两者的影响,能够实现操作条件的优化和电堆输出性能的优化控制。
中图分类号:
王茹, 沈永超, 卫东, 郭倩. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257.
Ru WANG, Yongchao SHEN, Dong WEI, Qian GUO. Analysis of PEMFC water management status based on DC internal resistance and AC impedance characteristics[J]. CIESC Journal, 2020, 71(7): 3247-3257.
参数 | 数值 | 参数 | 数值 | 参数 | 数值 |
---|---|---|---|---|---|
Va | 0~30 L/min | δ | 80 μm | α | 0.05 |
Vc | 0~150 L/min | A | 180 cm2 | tm | 0.051 mm |
0.1~0.3 MPa | N | 16 | Cg | 4 mol/L | |
pair | 0.15~0.45 MPa | RH | 35%~95% | T | 308~368 K |
0.1~0.4 g/s | Mair | 0.36~0.8 g/s | t* | 5~60 s |
表1 模型仿真参数表
Table 1 Model simulation parameter table
参数 | 数值 | 参数 | 数值 | 参数 | 数值 |
---|---|---|---|---|---|
Va | 0~30 L/min | δ | 80 μm | α | 0.05 |
Vc | 0~150 L/min | A | 180 cm2 | tm | 0.051 mm |
0.1~0.3 MPa | N | 16 | Cg | 4 mol/L | |
pair | 0.15~0.45 MPa | RH | 35%~95% | T | 308~368 K |
0.1~0.4 g/s | Mair | 0.36~0.8 g/s | t* | 5~60 s |
参数 | 优化 | 正常1 | 正常2 | 膜干 | 水淹 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
i/(A/cm2) | 0~0.06 | 0.06~0.7 | 0.7~0.9 | 0~0.09 | 0.09~0.75 | 0.75~0.9 | 0~0.09 | 0.09~0.75 | 0.75~0.9 | 0~0.03 | 0.03~0.7 | 0.4~0.8 |
U/V | 13.2~15.4 | 10.7~13.1 | 8.65~10.7 | 12.13~15.4 | 5.8~15.4 | 3.25~5.8 | 11.8~15.4 | 4.1~11.8 | 1.44~4.3 | 12.0~15.5 | 1.14~12.0 | 0.5~11.5 |
Tstack/K | 306~309 | 306~335 | 335~343 | 309~312 | 310~338 | 338~345 | 303~306 | 306~330 | 330~343 | 293~303 | 303~333 | 320~333 |
RHstack | 40%~50% | 50%~70% | 70%~80% | 40%~45% | 45%~55% | 55%~70% | 40%~50% | 60%~75% | 75%~85% | 30%~35% | 35%~40% | 65%~95% |
Rf/(Ω·cm2) | 33.7~73.7 | 3.1~33.7 | 1.66~3.1 | 22.58~90.1 | 2.2~22.6 | 1.38~2.2 | 23.8~76.5 | 3.1~23.8 | 1.68~2.11 | 88.2~161.4 | 5.4~100.4 | 2.05~11.5 |
Rm/(Ω·cm2) | 4.43~5.3 | 3.28~4.4 | 1.52~3.3 | 10.1~11.0 | 6.82~10.1 | 7.12~8.8 | 12.4~13.1 | 6.02~12.4 | 5.97~8.0 | 16.66~18.5 | 15.65~18.3 | 2.04~4.40 |
Rd/(Ω·cm2) | 0.02~0.03 | 0.03~1.12 | 1.12~4.34 | 0.02~0.03 | 0.03~1.17 | 1.17~5.01 | 0.02~0.03 | 0.03~2.45 | 2.45~7.90 | 0.02~0.03 | 0.03~0.54 | 1.91~27.6 |
Rstack/(Ω·cm2) | 38.2~78.3 | 6.8~38.3 | 6.7~8.53 | 32.7~100.3 | 9.02~32.7 | 9.02~13.5 | 36.3~89.0 | 9.15~40.1 | 7.37~15.6 | 83.4~176.8 | 20.4~78.3 | 9.85~30.5 |
表2 不同操作条件下Rf、Rm、Rd和Rstack阻值计算结果
Table 2 Calculation results of Rf, Rm, Rd and Rstack resistance under different operating conditions
参数 | 优化 | 正常1 | 正常2 | 膜干 | 水淹 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
i/(A/cm2) | 0~0.06 | 0.06~0.7 | 0.7~0.9 | 0~0.09 | 0.09~0.75 | 0.75~0.9 | 0~0.09 | 0.09~0.75 | 0.75~0.9 | 0~0.03 | 0.03~0.7 | 0.4~0.8 |
U/V | 13.2~15.4 | 10.7~13.1 | 8.65~10.7 | 12.13~15.4 | 5.8~15.4 | 3.25~5.8 | 11.8~15.4 | 4.1~11.8 | 1.44~4.3 | 12.0~15.5 | 1.14~12.0 | 0.5~11.5 |
Tstack/K | 306~309 | 306~335 | 335~343 | 309~312 | 310~338 | 338~345 | 303~306 | 306~330 | 330~343 | 293~303 | 303~333 | 320~333 |
RHstack | 40%~50% | 50%~70% | 70%~80% | 40%~45% | 45%~55% | 55%~70% | 40%~50% | 60%~75% | 75%~85% | 30%~35% | 35%~40% | 65%~95% |
Rf/(Ω·cm2) | 33.7~73.7 | 3.1~33.7 | 1.66~3.1 | 22.58~90.1 | 2.2~22.6 | 1.38~2.2 | 23.8~76.5 | 3.1~23.8 | 1.68~2.11 | 88.2~161.4 | 5.4~100.4 | 2.05~11.5 |
Rm/(Ω·cm2) | 4.43~5.3 | 3.28~4.4 | 1.52~3.3 | 10.1~11.0 | 6.82~10.1 | 7.12~8.8 | 12.4~13.1 | 6.02~12.4 | 5.97~8.0 | 16.66~18.5 | 15.65~18.3 | 2.04~4.40 |
Rd/(Ω·cm2) | 0.02~0.03 | 0.03~1.12 | 1.12~4.34 | 0.02~0.03 | 0.03~1.17 | 1.17~5.01 | 0.02~0.03 | 0.03~2.45 | 2.45~7.90 | 0.02~0.03 | 0.03~0.54 | 1.91~27.6 |
Rstack/(Ω·cm2) | 38.2~78.3 | 6.8~38.3 | 6.7~8.53 | 32.7~100.3 | 9.02~32.7 | 9.02~13.5 | 36.3~89.0 | 9.15~40.1 | 7.37~15.6 | 83.4~176.8 | 20.4~78.3 | 9.85~30.5 |
电堆参数 | 数值 | 电堆参数 | 数值 |
---|---|---|---|
额定功率 | 1.5 kW | 输出电流范围 | 0~160 A |
额定电压 | 10.5 V | 输出电压范围 | 7.2~16 V |
额定电流 | 143 A | 氢气/空气压力 | 0.1~0.15 MPa |
表3 质子交换膜燃料电池堆性能参数
Table 3 PEMFC stack performance parameters
电堆参数 | 数值 | 电堆参数 | 数值 |
---|---|---|---|
额定功率 | 1.5 kW | 输出电流范围 | 0~160 A |
额定电压 | 10.5 V | 输出电压范围 | 7.2~16 V |
额定电流 | 143 A | 氢气/空气压力 | 0.1~0.15 MPa |
电流密度/ (A/cm2) | 阻抗 | 不同状态下误差/% | ||||
---|---|---|---|---|---|---|
优化 | 正常1 | 正常2 | 膜干1 | 膜干2 | ||
0.1 | Rm | 1.13 | 2.01 | 2.48 | 2.45 | 2.80 |
Rstack | -1.93 | -3.36 | -3.07 | -5.13 | -5.53 | |
0.4 | Rm | 1.40 | 1.02 | 2.49 | -1.78 | -2.45 |
Rstack | -1.99 | -2.59 | -2.27 | -3.84 | -4.02 | |
0.8 | Rm | 1.89 | 1.28 | 1.68 | 1.49 | 1.16 |
Rstack | -2.27 | -3.23 | -3.41 | -3.49 | -3.62 |
表4 电化学阻抗图误差分析表
Table 4 Error analysis table of electrochemical impedance map
电流密度/ (A/cm2) | 阻抗 | 不同状态下误差/% | ||||
---|---|---|---|---|---|---|
优化 | 正常1 | 正常2 | 膜干1 | 膜干2 | ||
0.1 | Rm | 1.13 | 2.01 | 2.48 | 2.45 | 2.80 |
Rstack | -1.93 | -3.36 | -3.07 | -5.13 | -5.53 | |
0.4 | Rm | 1.40 | 1.02 | 2.49 | -1.78 | -2.45 |
Rstack | -1.99 | -2.59 | -2.27 | -3.84 | -4.02 | |
0.8 | Rm | 1.89 | 1.28 | 1.68 | 1.49 | 1.16 |
Rstack | -2.27 | -3.23 | -3.41 | -3.49 | -3.62 |
1 | 李英, 周勤文, 张香平. 质子交换膜燃料电池稳态自增湿性能分析[J]. 化工学报, 2014, 65(5): 1893-1899. |
Li Y, Zhou Q W, Zhang X P. Numerical analysis of steady state self-humidification performance of PEMFC[J]. CIESC Journal, 2014, 65(5): 1893-1899. | |
2 | 陈维荣, 牛茁, 韩喆, 等. 水冷PEMFC 热管理系统流量跟随控制策略[J]. 化工学报, 2017, 68(4): 1490-1498. |
Chen W R, Niu Z, Han Z, et al. Flow following control strategy for thermal management of water-cooled PEMFC[J]. CIESC Journal, 2017, 68(4): 1490-1498. | |
3 | 陈思彤, 李微微, 王学科, 等. 相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016, 67: 1-6. |
Chen S T, Li W W, Wang X K, et al. Thermal management using phase change materials for proton exchange membrane fuel cells[J]. CIESC Journal, 2016, 67: 1-6. | |
4 | Giner-Sanz J J, Ortega, Pérez-Herranz V. Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2018, 381(31): 84-93. |
5 | Giner-Sanz J J, Ortega E, Pérez-Herranz V. Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2018, 379(1): 328-337. |
6 | Russo L, Sorrentino M, Polverino P, et al. Application of Buckingham π theorem for scaling-up oriented fast modelling of proton exchange membrane fuel cell impedance[J]. Journal of Power Sources, 2017, 353(15): 277-286. |
7 | Pivac I, Barbir F. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells — a review[J]. Journal of Power Sources, 2016, 326(15): 112-119. |
8 | Jahnke T, Futter G, Lazr A, et al. performance and degradation of proton exchange membrane fuel cells: state of the art in modeling from atomistic to system scale[J]. Journal of Power Sources, 2016, 304(1): 207-233. |
9 | Georg A F, Gazdzicki P, Friedrich K A, et al. Physical modeling of polymer-electrolyte membrane fuel cells: understanding water management and impedance spectra[J]. Journal of Power Sources, 2018, 391(1): 148-161. |
10 | Laribi S, Mammar K, Sahli Y, et al. Air supply temperature impact on the PEMFC impedance[J]. Journal of Energy Storage, 2018, 17: 327-335. |
11 | Vivona D, Casalegno A, Baricci A. Validation of a pseudo 2D analytical model for high temperature PEM fuel cell impedance valid at typical operative conditions [J]. Electrochimica Acta, 2019, 310(7): 122-135. |
12 | Kim J, Luo G, Wang C Y. Modeling liquid water re-distributions in bi-porous layer flow-fields of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2018, 400(1): 284-295. |
13 | Dai W, Wang H J, Yuan X Z, et al. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(23): 9461- 9478. |
14 | Wang Z Q, Zeng Y C, Sun S C, et al. Improvement of PEMFC water management by employing water transport plate as bipolar plate[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21922-21929. |
15 | 何晓波, 詹志刚, 张洪凯, 等. 基于水平衡的PEM燃料电池大电流运行优化控制[J]. 工程热物理学报, 2017, 38(9): 1994-2000. |
He X B, Zhan Z G, Zhang H K, et al. The optimal control of PEM fuel cell operating at large current density based on water balance [J]. Journal of Engineering Thermophysics, 2017, 38(9): 1994-2000. | |
16 | Salahuddin M, Uddin M N, Hwang G, et al. Superhydrophobic PAN nanofibers for gas diffusionlayers of proton exchange membrane fuel cells for cathodic water management[J]. International Journal of Hydrogen Energy, 2018, 43(25): 11530-11538. |
17 | Moçotéguy P, Ludwig B, Steiner N Y. Application of current steps and design of experiments methodology to the detection of water management faults in a proton exchange membrane fuel cell stack[J]. Journal of Power Sources, 2016, 303(30): 126-136. |
18 | Pei P, Li Y, Xu H, et al. A review on water fault diagnosis of PEMFC associated with the pressure drop[J]. Applied Energy, 2016, 173(1): 366-385. |
19 | Nandjou F, Poirot-Crouvezier J P, Chandesris M, et al. Impact of heat and water management on proton exchange membrane fuel cells degradation in automotive application[J]. Journal of Power Sources, 2016, 326(15): 182-192. |
20 | Georg A F, Latz A, Jahnke T. Physical modeling of chemical membrane degradation in polymer electrolyte membrane fuel cells: influence of pressure, relative humidity and cell voltage[J]. Journal of Power Sources, 2019, 410(15): 78-90. |
21 | Zhao J, Jian Q F, Huang Z P, et al. Experimental study on water management improvement of proton exchange membrane fuel cells with dead-ended anode by periodically supplying fuel from anode outlet[J]. Journal of Power Sources, 2019, 435(30): 226-275. |
22 | 陶泽炎. 基于内阻检测的PEMFC温湿度特性及控制规则研究[D]. 杭州: 中国计量大学, 2016. |
Tao Z Y. Research on PEMFC temperature and humidity performances and control rules based on internal resistance detection[D]. Hangzhou: China Jiliang University, 2016. | |
23 | 高志, 蔡慧, 卫东, 等. 水冷型PEMFC输出特性建模与仿真分析[J]. 太阳能学报, 2019, 40(5): 1472-1480. |
Gao Z, Cai H, Wei D, et al. Water-cooling PEMFC output characteristic modeling and simulation analysis[J]. Acta Energiae Solaris Sinica, 2019, 40(5): 1472-1480. | |
24 | 王振, 卫东, 叶洪吉. 基于频率正割角计算的燃料电池堆水热管理状态诊断方法[J]. 化工学报, 2018, 69(10): 4371-4377 |
Wang Z, Wei D, Ye H J. Method for diagnosing state of hydrothermal management of fuel cell stack based on frequency secant angle[J]. CIESC Journal, 2018, 69(10): 4371-4377. | |
25 | Ijaoaola O S, El-Hassan Z, Ogungbemi E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC) [J]. Energy, 2019, 179(15): 246-267. |
26 | Shang D H, Ma B, Zhang G S, et al. Impedance analysis of proton exchange membrane fuel cells under different discharge conditions[J]. Journal of Xi'an Jiaotong University, 2008, 42(8): 622-625. |
27 | Subin K, Jithesh P K. Experimental study on self-humidified operation in PEM fuel cells[J]. Sustainable Energy Technologies and Assessments, 2018, 27: 17-22. |
28 | Lu H X, Chen J, Yan C Z. On-line fault diagnosis for proton exchange membrane fuel cells based on a fast electrochemical impedance spectroscopy measurement[J]. Journal of Power Sources, 2019, 430(1): 233-243. |
29 | Miassa T A, Olivier B, Emmanuel G. Identification of a PEMFC fractional order model[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1499-1509. |
30 | Dao D V, Adilblish G, Lee I, et al. Enhanced electrocatalytic property of Pt/C electrode with double catalyst layers for PEMFC[J]. International Journal of Hydrogen Energy, 2019, 44(45): 24580-24590. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[3] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[4] | 李雪, 东明, 张璜, 谢俊. 潮湿环境下微尺度颗粒撞击平板的动力学研究[J]. 化工学报, 2022, 73(5): 1940-1946. |
[5] | 梁旭鸣, 沈永超, 卫东, 郭倩, 高志. 基于直流内阻和交流阻抗特性的铝空气电池输出特性分析[J]. 化工学报, 2021, 72(8): 4361-4370. |
[6] | 唐和礼, 张冰, 黄冬梅, 申渝, 高旭, 时文歆. XDLVO理论在膜污染解析中的应用研究[J]. 化工学报, 2021, 72(3): 1230-1241. |
[7] | 何吉喆, 刘明言, 徐杨书函. 环氧豆油树脂涂层的防腐性能研究[J]. 化工学报, 2021, 72(2): 1067-1077. |
[8] | 方黄峰, 刘瑶瑶, 张文彪. 基于LSTM神经网络的流化床干燥器内生物质颗粒湿度预测[J]. 化工学报, 2020, 71(S1): 307-314. |
[9] | 吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020, 71(S1): 471-478. |
[10] | 李屹, 张小松. 一种基于电渗析的空气直接富氧装置影响因素[J]. 化工学报, 2018, 69(S2): 388-393. |
[11] | 王振, 卫东, 叶洪吉. 基于频率正割角计算的燃料电池堆水热管理状态诊断方法[J]. 化工学报, 2018, 69(10): 4371-4377. |
[12] | 涂耀东, 葛天舒, 王如竹. 吸附除湿换热:弱关联热质耦合传递过程[J]. 化工学报, 2016, 67(S1): 97-102. |
[13] | 朱晓兵, 张建辉, 李小松, 刘景林, 刘剑豪, 金灿. 空气源电化学连续分离制氧(Ⅰ):单池性能优化[J]. 化工学报, 2016, 67(5): 2022-2032. |
[14] | 聂瑶, 丁炜, 魏子栋. 质子交换膜燃料电池非铂电催化剂研究进展[J]. 化工学报, 2015, 66(9): 3305-3318. |
[15] | 彭跃进, 彭赟, 李伦, 刘志祥, 陈维荣. 质子交换膜燃料电池电源系统停机特性及控制策略[J]. 化工学报, 2015, 66(3): 1178-1184. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 246
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||