化工学报 ›› 2023, Vol. 74 ›› Issue (1): 355-364.DOI: 10.11949/0438-1157.20220935
收稿日期:
2022-07-04
修回日期:
2022-07-19
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
陈卓,徐建鸿
作者简介:
黄心童(1999—),女,博士研究生,1060925728@qq.com
基金资助:
Xintong HUANG(), Yuhao GENG, Hengyuan LIU, Zhuo CHEN(), Jianhong XU()
Received:
2022-07-04
Revised:
2022-07-19
Online:
2023-01-05
Published:
2023-03-20
Contact:
Zhuo CHEN, Jianhong XU
摘要:
纳米粒子在显示器、催化剂和生物医学等领域有着广泛的应用,其可控制备一直是研究的重点。与传统的间歇釜式生产工艺相比,微流控技术具有高效混合、传质传热快、反应条件精准可控以及可在线分析等特点,可用于高效连续化合成单分散纳米粒子,并为新型功能纳米粒子的开发提供了平台。本文主要介绍了近年来微流控技术在新型功能纳米粒子制备中的应用,重点综述了在量子点、金属及金属氧化物纳米粒子制备中的研究进展,并对其未来方向进行展望。
中图分类号:
黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364.
Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology[J]. CIESC Journal, 2023, 74(1): 355-364.
图2 微流控制备全光谱碳点装置示意图(a);连续法合成碳点的TEM图(b);高压釜中合成碳点的TEM图(c);碳点的全荧光光谱(d);碳点380、480和550 nm激发光下显示蓝色、黄色和红色荧光(e)[39]
Fig.2 Schematic diagram of an apparatus for microfluidic synthesis of full-spectrum carbon dots (a); TEM images of carbon dots synthesized by a continuous method (b) and in an autoclave at a scale of 10 nm (c); The full fluorescence spectrum of the CDs: from the blue to red regions (d); CDs showing blue, yellow, and red fluorescence under excitation by light at 380, 480 and 550 nm, respectively (e)[39]
图4 微流控制备CdSe量子点的装置示意图(a);微混合器实拍图[41](b);两种微流控方法制备CdSe量子点的装置示意图[42](c)
Fig.4 Schematic diagram of an apparatus for microfluidic synthesis of CdSe quantum dots (a); The picture of micromixer[41] (b); Schematic diagram of two microfluidic methods for CdSe quantum dots synthesis[42] (c)
图5 液滴流微反应器装置示意图(a);CsPb(X/Y)3@APTES限域生长和自水解过程(b)[52]
Fig.5 Design and schematic of droplet-based microreactor system (DBMS) (a) and the confined growth and self-hydrolysis processes of CsPb(X/Y)3@APTES (b)[52]
图6 智能模块化流体微处理器示意图(a);胶体量子点自主合成和优化流程图(b)[54]
Fig.6 Schematic of the developed smart modular fluidic microprocessor (a); The process flow diagram of autonomous synthesis and optimization of colloidal quantum dots (b)[54]
图9 ZnO纳米粒子的不同类型微反应器制备: 超临界微反应器[69] (a); 超声微反应器[70] (b); 液滴流微反应器[71] (c)
Fig.9 Synthesis of ZnO nanoparticles with different types of microreactors : supercritical microfluidics setup[69] (a); ultrasonication microreactor[70] (b);droplet-based microreactor[71] (c)
1 | Stark W J, Stoessel P R, Wohlleben W, et al. Industrial applications of nanoparticles[J]. Chemical Society Reviews, 2015, 44(16): 5793-5805. |
2 | Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. ChemInform, 2005, 105: 1025-1102. |
3 | Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles[J]. European Journal of Pharmaceutical Sciences, 2005, 24(1): 67-75. |
4 | Lu Y, Yin Y D, Mayers B T, et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach[J]. Nano Letters, 2002, 2(3): 183-186. |
5 | Kumar H, Rani R. Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route[J]. International Letters of Chemistry, Physics and Astronomy, 2013, 19: 26-36. |
6 | Wang D S, Li Y D. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications[J]. Advanced Materials, 2011, 23(9): 1044-1060. |
7 | Zhao C X, He L Z, Qiao S Z, et al. Nanoparticle synthesis in microreactors[J]. Chemical Engineering Science, 2011, 66(7): 1463-1479. |
8 | Song Y J, Hormes J, Kumar C S S R. Microfluidic synthesis of nanomaterials[J]. Small, 2008, 4(6): 698-711. |
9 | Chen L, Yang C, Xiao Y, et al. Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales[J]. Materials Today Nano, 2021, 16: 100136. |
10 | Abou-Hassan A, Sandre O, Cabuil V. Microfluidics in inorganic chemistry[J]. Angewandte Chemie International Edition, 2010, 49(36): 6268-6286. |
11 | Marre S, Jensen K F. Synthesis of micro and nanostructures in microfluidic systems[J]. Chemical Society Reviews, 2010, 39(3): 1183-1202. |
12 | Ma J P, Lee S M Y, Yi C Q, et al. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications—a review[J]. Lab on a Chip, 2017, 17(2): 209-226. |
13 | Sun Z, Wu B, Ren Y, et al. Diverse particle carriers prepared by co-precipitation and phase separation: formation and applications[J]. ChemPlusChem, 2021, 86(1): 49-58. |
14 | Wagner J, Tshikhudo T R, Köhler J M. Microfluidic generation of metal nanoparticles by borohydride reduction[J]. Chemical Engineering Journal, 2008, 135: S104-S109. |
15 | Sun Z, Yan X, Xiao Y, et al. Pickering emulsions stabilized by colloidal surfactants: role of solid particles[J]. Particuology, 2022, 64: 153-163. |
16 | Wu K, Torrente-Murciano L. Continuous synthesis of tuneable sized silver nanoparticles via a tandem seed-mediated method in coiled flow inverter reactors[J]. Reaction Chemistry & Engineering, 2018, 3(3): 267-276. |
17 | Liu G, Ma X, Sun X, et al. Controllable synthesis of silver nanoparticles using three-phase flow pulsating mixing microfluidic chip[J]. Advances in Materials Science and Engineering, 2018, 2018: 3758161. |
18 | Maeki M, Uno S, Niwa A, et al. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery[J]. Journal of Controlled Release, 2022, 344: 80-96. |
19 | Wang H, Yuan C, Liu C, et al. Microwave-assisted continuous flow phytosynthesis of silver nanoparticle/reduced graphene oxide composites and related visible light catalytic performance[J]. Journal of Environmental Sciences, 2022, 115: 286-293. |
20 | Salley D, Keenan G, Grizou J, et al. A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles[J]. Nature Communications, 2020, 11(1): 2771. |
21 | Knauer A, Csáki A, Möller F, et al. Microsegmented flow-through synthesis of silver nanoprisms with exact tunable optical properties[J]. The Journal of Physical Chemistry C, 2012, 116(16): 9251-9258 |
22 | Zhang L, Wang Y, Tong L, et al. Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air[J]. Langmuir, 2013, 29(50): 15719-15725. |
23 | Valizadeh A, Mikaeili H, Samiei M, et al. Quantum dots: synthesis, bioapplications, and toxicity[J]. Nanoscale Research Letters, 2012, 7(1): 480. |
24 | Völker J, Zhou X Y, Ma X D, et al. Semiconductor nanocrystals with adjustable hole acceptors: tuning the fluorescence intensity by metal-ion binding[J]. Angewandte Chemie International Edition, 2010, 49(38): 6865-6868. |
25 | Kubendhiran S, Bao Z, Dave K, et al. Microfluidic synthesis of semiconducting colloidal quantum dots and their applications[J]. ACS Applied Nano Materials, 2019, 2(4): 1773-1790. |
26 | Nightingale A M, de Mello J C. Microscale synthesis of quantum dots[J]. Journal of Materials Chemistry, 2010, 20(39): 8454. |
27 | Edel J B, Fortt R, deMello J C, et al. Microfluidic routes to the controlled production of nanoparticles[J]. Chemical Communications, 2002(10): 1136-1137. |
28 | Yan X, Cui X, Li B S, et al. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics[J]. Nano Letters, 2010, 10(5): 1869-1873. |
29 | Wang Y F, Hu A G. Carbon quantum dots: synthesis, properties and applications[J]. Journal of Materials Chemistry C, 2014, 2(34): 6921. |
30 | Fang Y X, Guo S J, Li D, et al. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles[J]. ACS Nano, 2012, 6(1): 400-409. |
31 | Calabro R L, Yang D S, Kim D Y. Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: comparison with chemical oxidation[J]. Journal of Colloid and Interface Science, 2018, 527: 132-140. |
32 | Dey S, Govindaraj A, Biswas K, et al. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples[J]. Chemical Physics Letters, 2014, 595/596: 203-208. |
33 | Xie Y D, Kocaefe D, Chen C Y, et al. Review of research on template methods in preparation of nanomaterials[J]. Journal of Nanomaterials, 2016, 2016: 2302595. |
34 | Wang X, Feng Y Q, Dong P P, et al. A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application[J]. Frontiers in Chemistry, 2019, 7: 671. |
35 | Shi Q Q, Li Y H, Xu Y, et al. High-yield and high-solubility nitrogen-doped carbon dots: formation, fluorescence mechanism and imaging application[J]. RSC Adv., 2014, 4(4): 1563-1566. |
36 | Li Q J, Zhou M, Yang M Y, et al. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices[J]. Nature Communications, 2018, 9: 734. |
37 | Cheng Y, Chen Z, Wang Y D, et al. Continuous synthesis of N, S co-coped carbon dots for selective detection of CD (Ⅱ) ions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 429: 113910. |
38 | Merzlyak E M, Goedhart J, Shcherbo D, et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime[J]. Nature Methods, 2007, 4(7): 555-557. |
39 | Shao M, Yu Q, Jing N, et al. Continuous synthesis of carbon dots with full spectrum fluorescence and the mechanism of their multiple color emission[J]. Lab on a Chip, 2019, 19(23): 3974-3978. |
40 | Nakamura H, Yamaguchi Y, Miyazaki M, et al. Preparation of CdSe nanocrystals in a micro-flow-reactor[J]. Chemical Communications, 2002(23): 2844-2845. |
41 | Tian Z H, Xu J H, Wang Y J, et al. Microfluidic synthesis of monodispersed CdSe quantum dots nanocrystals by using mixed fatty amines as ligands[J]. Chemical Engineering Journal, 2016, 285: 20-26. |
42 | Tian Z H, Wang Y J, Xu J H, et al. Intensification of nucleation stage for synthesizing high quality CdSe quantum dots by using preheated precursors in microfluidic devices[J]. Chemical Engineering Journal, 2016, 302: 498-502. |
43 | 赵心语, 耿宇昊, 田震昊, 等. CdSe@ZnS量子点荧光传感器在水体铜离子污染检测中的应用[J]. 化工学报, 2021, 72(2): 1142-1148. |
Zhao X Y, Geng Y H, Tian Z H, et al. Application of CdSe@ZnS quantum dot fluorescence sensor in detection of copper ion pollution in water[J]. CIESC Journal, 2021, 72(2): 1142-1148. | |
44 | Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. |
45 | Wang N N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nature Photonics, 2016, 10(11): 699-704. |
46 | Aria M M, Srivastava S B, Sekerdag E, et al. Perovskite-based optoelectronic biointerfaces for non-bias-assisted photostimulation of cells[J]. Advanced Materials Interfaces, 2019, 6(17): 1900758. |
47 | Wang Q, Wang J, Wang J C, et al. Coupling CsPbBr3 quantum dots with covalent triazine frameworks for visible-light-driven CO2 reduction[J]. ChemSusChem, 2021, 14(4): 1131-1139. |
48 | Chen Y H, Tan S Q, Li N X, et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics[J]. Joule, 2020, 4(9): 1961-1976. |
49 | Swarnkar A, Marshall A R, Sanehira E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science, 2016, 354(6308): 92-95. |
50 | Wang H R, Zhang X Y, Wu Q Q, et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices[J]. Nature Communications, 2019, 10: 665. |
51 | Lu X, Hu Y, Guo J Z, et al. Fiber-spinning-chemistry method toward in situ generation of highly stable halide perovskite nanocrystals[J]. Advanced Science, 2019, 6(22): 1901694. |
52 | Geng Y H, Guo J Z, Wang H Q, et al. Large-scale production of ligand-engineered robust lead halide perovskite nanocrystals by a droplet-based microreactor system[J]. Small, 2022, 18(19): 2200740. |
53 | Lignos I, Maceiczyk R, DeMello A J. Microfluidic technology: uncovering the mechanisms of nanocrystal nucleation and growth[J]. Accounts of Chemical Research, 2017, 50(5): 1248-1257. |
54 | Epps R W, Bowen M S, Volk A A, et al. Artificial chemist: an autonomous quantum dot synthesis bot[J]. Advanced Materials, 2020, 32(30): 2001626. |
55 | Epps R W, Felton K C, Coley C W, et al. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing[J]. Lab on a Chip, 2017, 17(23): 4040-4047. |
56 | Sepúlveda B, Angelomé P C, Lechuga L M, et al. LSPR-based nanobiosensors[J]. Nano Today, 2009, 4(3): 244-251. |
57 | Hsu C W, Zhen B, Qiu W J, et al. Transparent displays enabled by resonant nanoparticle scattering[J]. Nature Communications, 2014, 5: 3152. |
58 | Torrente-Murciano L, Villager T, Chadwick D. Selective oxidation of salicylic alcohol to aldehyde with O2/H2 using Au-Pd on titanate nanotubes catalysts[J]. ChemCatChem, 2015, 7(6): 925-927. |
59 | El-Sayed I H, Huang X H, El-Sayed M A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles[J]. Cancer Letters, 2006, 239(1): 129-135. |
60 | Illath K, Narasimahan A K, Nagai M, et al. Microfluidics-based Metallic Nanoparticle Synthesis and Applications[M]. United Square: Jenny Stanford Publishing, 2020: 429-501. |
61 | Quinsaat J E Q, Testino A, Pin S, et al. Continuous production of tailored silver nanoparticles by polyol synthesis and reaction yield measured by X-ray absorption spectroscopy: toward a growth mechanism[J]. The Journal of Physical Chemistry C, 2014, 118(20): 11093-11103. |
62 | Lazarus L L, Riche C T, Marin B C, et al. Two-phase microfluidic droplet flows of ionic liquids for the synthesis of gold and silver nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(6): 3077-3083. |
63 | Kumar D V R, Kasture M, Prabhune A A, et al. Continuous flow synthesis of functionalized silver nanoparticles using bifunctional biosurfactants[J]. Green Chemistry, 2010, 12(4): 609. |
64 | Wu K J, de Varine Bohan G M, Torrente-Murciano L. Synthesis of narrow sized silver nanoparticles in the absence of capping ligands in helical microreactors[J]. Reaction Chemistry & Engineering, 2017, 2(2): 116-128. |
65 | Mekki-Berrada F, Ren Z K, Huang T, et al. Two-step machine learning enables optimized nanoparticle synthesis[J]. Npj Computational Materials, 2021, 7: 55. |
66 | Wang X N, Jia J P, Wang Y L. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline[J]. Chemical Engineering Journal, 2017, 315: 274-282. |
67 | Ha N H, Thinh D D, Huong N T, et al. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide[J]. Applied Surface Science, 2018, 434: 1048-1054. |
68 | Hao N J, Zhang M, Zhang J X J. Microfluidics for ZnO micro-/nanomaterials development: rational design, controllable synthesis, and on-chip bioapplications[J]. Biomaterials Science, 2020, 8(7): 1783-1801. |
69 | Roig Y, Marre S, Cardinal T, et al. Synthesis of exciton luminescent ZnO nanocrystals using continuous supercritical microfluidics[J]. Angewandte Chemie International Edition, 2011, 50(50): 12071-12074. |
70 | Yang W M, Yang H F, Ding W H, et al. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method[J]. Ultrasonics Sonochemistry, 2016, 33: 106-117. |
71 | Li S, Meierott S, Köhler J M. Effect of water content on growth and optical properties of ZnO nanoparticles generated in binary solvent mixtures by micro-continuous flow synthesis[J]. Chemical Engineering Journal, 2010, 165(3): 958-965. |
72 | Li S N, Roy A, Lichtenberg H, et al. Local structure of ZnO micro flowers and nanoparticles obtained by micro-segmented flow synthesis[J]. ChemPhysChem, 2012, 13(6): 1557-1561. |
[1] | 邓璐, 巨晓洁, 张文杰, 谢锐, 汪伟, 刘壮, 潘大伟, 褚良银. 微流控法可控制备放射性壳聚糖栓塞微球[J]. 化工学报, 2023, 74(4): 1781-1794. |
[2] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[3] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
[4] | 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843. |
[5] | 潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317. |
[6] | 陈婷, 胡泽浩, 秦喆, 陈园虹, 徐彦乔, 林坚, 谢志翔. 有机相微波合成AgInS2量子点及其白光发光二极管应用研究[J]. 化工学报, 2022, 73(11): 5167-5176. |
[7] | 费滢洁, 朱春英, 付涛涛, 高习群, 马友光. Y型微通道内纳米颗粒稳定气泡的完全阻塞破裂动力学[J]. 化工学报, 2022, 73(1): 213-221. |
[8] | 韩威, 詹俊, 石红, 赵东, 蔡少君, 彭湘红, 肖标, 高宇. 氮和硫双掺杂石墨烯量子点的合成及其性能研究[J]. 化工学报, 2021, 72(S1): 530-538. |
[9] | 刘嘉玮, 郝雨峰, 苏延磊. 石墨烯量子点纳滤膜的仿生修饰及稳定性研究[J]. 化工学报, 2021, 72(6): 3390-3398. |
[10] | 邢美波, 魏玉瑶, 王瑞祥. ZnO/PbS异质结量子点太阳能电池的界面修饰及稳定性研究[J]. 化工学报, 2021, 72(3): 1684-1691. |
[11] | 陈祯, 刘静, 朱春英, 付涛涛, 马友光. T型微通道内浆料体系中气泡生成行为与尺寸预测[J]. 化工学报, 2021, 72(2): 928-936. |
[12] | 赵心语, 耿宇昊, 田震昊, 徐建鸿. CdSe@ZnS量子点荧光传感器在水体铜离子污染检测中的应用[J]. 化工学报, 2021, 72(2): 1142-1148. |
[13] | 刘子炜, 戴诗逸, 段聪, 张志伟, 庞子凡, 朱春英, 付涛涛, 马友光. 台阶式单微通道内气泡生成动力学[J]. 化工学报, 2020, 71(2): 552-565. |
[14] | 张皓, 王凯. 基于显微图像识别的微流控液滴聚并研究[J]. 化工学报, 2020, 71(2): 526-534. |
[15] | 王利霞,张振华,李雷,张林森,方华,宋延华,李晓峰. Mo2N量子点@N-掺杂石墨烯复合材料的制备及储锂性能[J]. 化工学报, 2020, 71(12): 5854-5862. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 647
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 593
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||