1 |
Regulacio M D, Win K Y, Lo S L, et al. Aqueous synthesis of highly luminescent AgInS₂-ZnS quantum dots and their biological applications[J]. Nanoscale, 2013, 5(6): 2322-2327.
|
2 |
程焱华, 谢斌, 罗小兵. 高显色指数高光效的新型量子点转换LED[J]. 化工学报, 2017, 68(S1): 247-253.
|
|
Cheng Y H, Xie B, Luo X B. New quantum dots-converted light-emitting diodes with high color rendering index and high efficiency[J]. CIESC Journal, 2017, 68(S1): 247-253.
|
3 |
Mir I A, Radhakrishanan V S, Rawat K, et al. Bandgap tunable AgInS based quantum dots for high contrast cell imaging with enhanced photodynamic and antifungal applications[J]. Scientific Reports, 2018, 8: 9322.
|
4 |
Xia L, Tong X, Li X, et al. Synergistic tailoring of band structure and charge carrier extraction in “green” core/shell quantum dots for highly efficient solar energy conversion[J]. Chemical Engineering Journal, 2022, 442: 136214.
|
5 |
Su D L, Wang L, Li M, et al. Highly luminescent water-soluble AgInS2/ZnS quantum dots-hydrogel composites for warm white LEDs[J]. Journal of Alloys and Compounds, 2020, 824: 153896.
|
6 |
Li T T, He H, Zhang P M, et al. The synergy of step-scheme heterojunction and sulfur vacancies in AgInS2/AgIn5S8 for highly efficient photocatalytic degradation of oxytetracycline[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646: 128946.
|
7 |
Jones C M S, Panov N, Skripka A, et al. Effect of light scattering on upconversion photoluminescence quantum yield in microscale-to-nanoscale materials[J]. Optics Express, 2020, 28(15): 22803-22818.
|
8 |
Ruan C, Zhang Y, Lu M, et al. White light-emitting diodes based on AgInS₂/ZnS quantum dots with improved bandwidth in visible light communication[J]. Nanomaterials (Basel, Switzerland), 2016, 6(1): 13.
|
9 |
Hu X B, Chen T, Xu Y Q, et al. Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission[J]. Journal of Luminescence, 2018, 200: 189-195.
|
10 |
Huong T T T, Loan N T, Long L V, et al. Highly luminescent air-stable AgInS2/ZnS core/shell nanocrystals for grow lights[J]. Optical Materials, 2022, 130: 112564.
|
11 |
Huong T T T, Loan N T, Ung T, et al. Systematic synthesis of different-sized AgInS2/GaS x nanocrystals for emitting the strong and narrow excitonic luminescence[J]. Nanotechnology, 2022, 33(35): 2022, 33(35): 355704.
|
12 |
Zhu Y J, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase[J]. Chemical Reviews, 2014, 114(12): 6462-6555.
|
13 |
Latha M, Devi R A, Velumani S. Hot injection synthesis of Cu(In, Ga)Se2 nanocrystals with tunable bandgap[J]. Optical Materials, 2018, 79: 450-456.
|
14 |
Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088-4093.
|
15 |
Jain S, Bharti S, Bhullar G K, et al.Ⅰ-Ⅲ-Ⅵ core/shell QDs: synthesis, characterizations and applications[J]. Journal of Luminescence, 2020, 219: 116912.
|
16 |
Torimoto T, Adachi T, Okazaki K I, et al. Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore[J]. Journal of the American Chemical Society, 2007, 129(41): 12388-12389.
|
17 |
Gantassi A, Essaidi H, Ben Hamed Z, et al. Growth and characterization of single phase AgInS2 crystals for energy conversion application through β-In2S3 by thermal evaporation[J]. Journal of Crystal Growth, 2015, 413: 51-60.
|
18 |
Kharkwal A, Nitu, Jain K, et al. Novel synthesis of selective phase-shape orientation of AgInS2 nanoparticles at low temperature[J]. Colloid and Polymer Science, 2015, 293(7): 1953-1959.
|
19 |
Xiang W D, Yang H L, Liang X J, et al. Direct synthesis of highly luminescent Cu-Zn-In-S quaternary nanocrystals with tunable photoluminescence spectra and decay times[J]. Journal of Materials Chemistry C, 2013, 1(10): 2014-2020.
|
20 |
Yang W M, Zhang B, Ding N, et al. Fast synthesize ZnO quantum dots via ultrasonic method[J]. Ultrasonics Sonochemistry, 2016, 30: 103-112.
|
21 |
Yu Y L, Xu L R, Chen J, et al. Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells[J]. Colloids and Surfaces B: Biointerfaces, 2012, 95: 247-253.
|
22 |
Olkhovets A, Hsu R C, Lipovskii A, et al. Size-dependent temperature variation of the energy gap in lead-salt quantum dots[J]. Physical Review Letters, 1998, 81(16): 3539-3542.
|
23 |
Mao B D, Chuang C H, Lu F, et al. Study of the partial Ag-to-Zn cation exchange in AgInS2/ZnS nanocrystals[J]. The Journal of Physical Chemistry C, 2013, 117(1): 648-656.
|
24 |
Ilaiyaraja P, Das T K, Mocherla P S V, et al. Optical whispering gallery-enabled enhanced photovoltaic efficiency of CdS-CuInS2 thin film-sensitized whisperonic solar cells[J]. The Journal of Physical Chemistry C, 2019, 123(3): 1579-1586.
|
25 |
Hamanaka Y, Watanabe K, Kuzuya T. Luminescence enhancement mechanisms of AgInS2/ZnS core/shell nanoparticles fabricated by suppressing quaternary alloying[J]. Journal of Luminescence, 2020, 217: 116794.
|
26 |
Soares J X, Wegner K D, Ribeiro D S M, et al. Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control[J]. Nano Research, 2020, 13(9): 2438-2450.
|
27 |
Soheyli E, Ghaemi B, Sahraei R, et al. Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging[J]. Materials Science and Engineering: C, 2020, 111: 110807.
|
28 |
Wang X, Xie C P, Zhong J S, et al. Synthesis and temporal evolution of Zn-doped AgInS2 quantum dots[J]. Journal of Alloys and Compounds, 2015, 648: 127-133.
|
29 |
Pearson R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85(22): 3533-3539.
|
30 |
Hirase A, Hamanaka Y, Kuzuya T. Ligand-induced luminescence transformation in AgInS2 nanoparticles: from defect emission to band-edge emission[J]. The Journal of Physical Chemistry Letters, 2020, 11(10): 3969-3974.
|
31 |
Pal N K, Kryschi C. A facile one-pot synthesis of blue and red luminescent thiol stabilized gold nanoclusters: a thorough optical and microscopy study[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(33): 21423-21431.
|
32 |
Pretsch E, Bühlmann P, Badertscher M. Structure Determination of Organic Compounds: Tables of Spectral Data [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020.
|
33 |
Zhang R, Lin H, Yu Y L, et al. A new-generation color converter for high-power white LED: transparent Ce3+: YAG phosphor-in-glass[J]. Laser & Photonics Reviews, 2014, 8(1): 158-164.
|
34 |
Hu Z, Lu H X, Zhou W J, et al. Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes[J]. Journal of Materials Science & Technology, 2023, 134: 189-196.
|
35 |
Jang H S, Yang H, Kim S W, et al. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5: Ce3+, Li+ phosphors[J]. Advanced Materials, 2008, 20(14): 2696-2702.
|
36 |
Li F, Nie C, You L, et al. White light emitting device based on single-phase CdS quantum dots[J]. Nanotechnology, 2018, 29(20): 205701.
|
37 |
Chung S R, Chen S S, Wang K W, et al. Promotion of solid-state lighting for ZnCdSe quantum dot modified-YAG-based white light-emitting diodes[J]. RSC Advances, 2016, 6(57): 51989-51996.
|
38 |
Chen H S, Wang S J J, Lo C J, et al. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes[J]. Applied Physics Letters, 2005, 86(13): 131905.
|
39 |
Ziegler J, Xu S, Kucur E, et al. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs[J]. Advanced Materials, 2008, 20(21): 4068-4073.
|
40 |
Yin L Q, Zhang D D, Yan Y X, et al. Applying InP/ZnS green-emitting quantum dots and InP/ZnSe/ZnS red-emitting quantum dots to prepare WLED with enhanced photoluminescence performances[J]. IEEE Access, 2020, 8: 154683-154690.
|