1 |
陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439.
|
|
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439.
|
2 |
Kashid M, Renken A, Kiwi-Minsker L. Mixing efficiency and energy consumption for five generic microchannel designs[J]. Chemical Engineering Journal, 2011, 167(2/3): 436-443.
|
3 |
程曜峰, 张丽娟, 张炜, 等. 微萃取器在多粘菌素B萃取工艺中的应用[J]. 化学工业与工程, 2021, 38(2): 55-60.
|
|
Cheng Y F, Zhang L J, Zhang W, et al. Application of microextractor in polymyxin B extraction process[J]. Chemical Industry and Engineering, 2021, 38(2): 55-60.
|
4 |
王彦, 王靖涛. 微流控技术制备聚酰胺微胶囊的工艺研究[J]. 化学工业与工程, 2018, 35(6): 20-25.
|
|
Wang Y, Wang J T. Preparation of polyamide microcapsules based on microfluidics[J]. Chemical Industry and Engineering, 2018, 35(6): 20-25.
|
5 |
Günther A, Jensen K F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis[J]. Lab on a Chip, 2006, 6(12): 1487-1503.
|
6 |
du Toit H, MacDonald T J, Huang H, et al. Continuous flow synthesis of citrate capped gold nanoparticles using UV induced nucleation[J]. RSC Advances, 2017, 7(16): 9632-9638.
|
7 |
崔永晋, 李严凯, 王凯, 等. 微分散设备数量放大方式研究进展[J]. 化工学报, 2020, 71(10): 4350-4364.
|
|
Cui Y J, Li Y K, Wang K, et al. Recent advances of numbering-up technology of micro-dispersion devices[J]. CIESC Journal, 2020, 71(10): 4350-4364.
|
8 |
Tetradis-Meris G, Rossetti D, Pulido de Torres C, et al. Novel parallel integration of microfluidic device network for emulsion formation[J]. Industrial & Engineering Chemistry Research, 2009, 48(19): 8881-8889.
|
9 |
Link D R, Anna S L, Weitz D A, et al. Geometrically mediated breakup of drops in microfluidic devices[J]. Physical Review Letters, 2004, 92(5): 054503.
|
10 |
Fu T T, Ma Y G, Funfschilling D, et al. Dynamics of bubble breakup in a microfluidic T-junction divergence[J]. Chemical Engineering Science, 2011, 66(18): 4184-4195.
|
11 |
Wang X D, Zhu C Y, Fu T T, et al. Critical lengths for the transition of bubble breakup in microfluidic T-junctions[J]. Chemical Engineering Science, 2014, 111: 244-254.
|
12 |
Leshansky A M, Afkhami S, Jullien M C, et al. Obstructed breakup of slender drops in a microfluidic T junction[J]. Physical Review Letters, 2012, 108(26): 264502.
|
13 |
Hoang D A, Portela L M, Kleijn C R, et al. Dynamics of droplet breakup in a T-junction[J]. Journal of Fluid Mechanics, 2013, 717: R4.
|
14 |
Yamada M, Doi S, Maenaka H, et al. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis[J]. Journal of Colloid and Interface Science, 2008, 321(2): 401-407.
|
15 |
Liang D, Ma R, Fu T T, et al. Dynamics and formation of alternating droplets under magnetic field at a T-junction[J]. Chemical Engineering Science, 2019, 200: 248-256.
|
16 |
Dubash N, Mestel A J. Breakup behavior of a conducting drop suspended in a viscous fluid subject to an electric field[J]. Physics of Fluids, 2007, 19(7): 072101.
|
17 |
Lang L Y, Li H B, Wang X, et al. Experimental study and field demonstration of air-foam flooding for heavy oil EOR[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106659.
|
18 |
Andersons J, Kirpluks M, Cabulis P, et al. Bio-based rigid high-density polyurethane foams as a structural thermal break material[J]. Construction and Building Materials, 2020, 260: 120471.
|
19 |
Godefroidt T, Ooms N, Pareyt B, et al. Ingredient functionality during foam-type cake making: a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5): 1550-1562.
|
20 |
Aichele J, Giammarinaro B, Reinwald M, et al. Capturing the shear and secondary compression waves: high-frame-rate ultrasound imaging in saturated foams[J]. Physical Review Letters, 2019, 123(14): 148001.
|
21 |
Zhao Y J, Jones S A, Brown M B. Dynamic foams in topical drug delivery[J]. Journal of Pharmacy and Pharmacology, 2010, 62(6): 678-684.
|
22 |
Binks B P, Horozov T S. Aqueous foams stabilized solely by silica nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(24): 3722-3725.
|
23 |
Ravera F, Santini E, Loglio G, et al. Effect of nanoparticles on the interfacial properties of liquid/liquid and liquid/air surface layers[J]. The Journal of Physical Chemistry. B, 2006, 110(39): 19543-19551.
|
24 |
Binks B P, Kirkland M, Rodrigues J A. Origin of stabilisation of aqueous foams in nanoparticle-surfactant mixtures[J]. Soft Matter, 2008, 4(12): 2373.
|
25 |
van Steijn V, Kleijn C R, Kreutzer M T. Flows around confined bubbles and their importance in triggering pinch-off[J]. Physical Review Letters, 2009, 103(21): 214501.
|
26 |
Jullien M C, Tsang Mui Ching M J, Cohen C, et al. Droplet breakup in microfluidic T-junctions at small capillary numbers[J]. Physics of Fluids, 2009, 21(7): 072001.
|
27 |
Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446.
|
28 |
Fei W J, Gu Y, Bishop K J M. Active colloidal particles at fluid-fluid interfaces[J]. Current Opinion in Colloid & Interface Science, 2017, 32: 57-68.
|
29 |
Fei Y J, Zhu C Y, Fu T T, et al. The breakup dynamics of bubbles stabilized by nanoparticles in a microfluidic Y-junction[J]. Chemical Engineering Science, 2021, 245: 116867.
|
30 |
Wu Y N, Wang R Y, Dai C L, et al. Precisely tailoring bubble morphology in microchannel by nanoparticles self-assembly[J]. Industrial & Engineering Chemistry Research, 2019, 58(9): 3707-3713.
|
31 |
Burton J C, Waldrep R, Taborek P. Scaling and instabilities in bubble pinch-off[J]. Physical Review Letters, 2005, 94(18): 184502.
|
32 |
Eggers J, Fontelos M A, Leppinen D, et al. Theory of the collapsing axisymmetric cavity[J]. Physical Review Letters, 2007, 98(9): 094502.
|
33 |
Du W, Fu T T, Zhang Q D, et al. Self-similar breakup of viscoelastic thread for droplet formation in flow-focusing devices[J]. AIChE Journal, 2017, 63(11): 5196-5206.
|