化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 302-310.DOI: 10.11949/0438-1157.20221544
收稿日期:
2022-11-30
修回日期:
2022-12-05
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
李廷贤
作者简介:
晁京伟(1994—),男,博士,sjtu_anqiao@sjtu.edu.cn
基金资助:
Jingwei CHAO(), Jiaxing XU, Tingxian LI()
Received:
2022-11-30
Revised:
2022-12-05
Online:
2023-06-05
Published:
2023-09-27
Contact:
Tingxian LI
摘要:
为改善吸附热池的传热传质性能以提高吸附热池的能量/功率密度,提出无管束蒸发换热强化策略,通过理论仿真分析了该策略的有效性并建立了储热容量为30 kWh的吸附热池系统。研究结果表明:与有管束蒸发器相比,所述无管束蒸发器的热阻减小了94.9%,吸附-蒸发速率提高了24.2%,因此,与基于有管束蒸发器的吸附热池相比,基于无管束蒸发换热强化策略的吸附热池的平均供热温度提高了3℃,充分证明了无管束蒸发策略对提升吸附热池传热传质性能的有效性。同时,该研究也表明,提高脱附温度和降低冷凝压力也可以有效提高吸附热池的能量/功率密度,从而使吸附热池获得更好的供热性能,当吸附热池的脱附温度升高到170℃、冷凝压力降低到7.5 kPa时,吸附热池的能量密度和功率密度分别达到了113.21 Wh/kg和149.45 W/kg,供热温度和制热水能力分别达到了55℃和1980.2 L/h,验证了所设计吸附热池系统向多用户同时供热或向单用户长时间供热的能力,为提高未来吸附热池的能量/功率密度,实现大规模储热提供了理论和实验基础。
中图分类号:
晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310.
Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery[J]. CIESC Journal, 2023, 74(S1): 302-310.
参数 | 数值 |
---|---|
环境温度/℃ | 35 |
环境湿度/% | 25 |
制冷剂充注量/kg | 150 |
吸附剂质量/kg | 340 |
循环供热水质量/kg | 1500 |
冷剂水流量/(kg/s) | 2.7 |
空冷器风量/(m3/h) | 55000 |
吸附剂初始含水量/(g/g) | 0.065(Tdes=170℃) |
表1 计算过程的初始条件
Table 1 The initial condition in this calculation
参数 | 数值 |
---|---|
环境温度/℃ | 35 |
环境湿度/% | 25 |
制冷剂充注量/kg | 150 |
吸附剂质量/kg | 340 |
循环供热水质量/kg | 1500 |
冷剂水流量/(kg/s) | 2.7 |
空冷器风量/(m3/h) | 55000 |
吸附剂初始含水量/(g/g) | 0.065(Tdes=170℃) |
参数 | 有管束蒸发器 | 无管束蒸发器 |
---|---|---|
外形尺寸 | 0.8 m×1.5 m×0.158 m | 0.8 m×1.5 m×0.158 m |
内管数量 | 36 | 0 |
管外径/mm | 15.88 | — |
管内径/mm | 14.45 | — |
管长/mm | 700 | — |
水充注量/kg | 150 | 150 |
表2 有/无管束蒸发器结构参数
Table 2 The parameter of the evaporator with/without tubes
参数 | 有管束蒸发器 | 无管束蒸发器 |
---|---|---|
外形尺寸 | 0.8 m×1.5 m×0.158 m | 0.8 m×1.5 m×0.158 m |
内管数量 | 36 | 0 |
管外径/mm | 15.88 | — |
管内径/mm | 14.45 | — |
管长/mm | 700 | — |
水充注量/kg | 150 | 150 |
1 | Yu N, Wang R Z, Wang L W. Sorption thermal storage for solar energy [J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514. |
2 | Xu J X, Chao J W, Li T X, et al. Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air[J]. ACS Central Science, 2020, 6(9): 1542-1554. |
3 | Poshtiri A H, Bahar S, Jafari A. Daily cooling of one-story buildings using domed roof and solar adsorption cooling system[J]. Applied Energy, 2016, 182: 299-319. |
4 | Vasta S, Palomba V, La Rosa D, et al. Adsorption cold storage for mobile applications[J]. Applied Sciences, 2020, 10(6): 2044. |
5 | Bao H S, Wang R Z, Oliveira R G, et al. Resorption system for cold storage and long-distance refrigeration[J]. Applied Energy, 2012, 93: 479-487. |
6 | Frazzica A, Brancato V, Caprì A, et al. Development of “salt in porous matrix” composites based on LiCl for sorption thermal energy storage[J]. Energy, 2020, 208: 118338. |
7 | Courbon E, D'Ans P, Permyakova A, et al. A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J]. Applied Energy, 2017, 190: 1184-1194. |
8 | Zhang Y N, Wang R Z, Li T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J]. Energy, 2018, 156: 240-249. |
9 | Cammarata A, Verda V, Sciacovelli A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: formulation, fabrication and performance investigation[J]. Energy Conversion and Management, 2018, 166: 233-240. |
10 | Ammann J, Michel B, Ruch P W. Characterization of transport limitations in SAPO-34 adsorbent coatings for adsorption heat pumps[J]. International Journal of Heat and Mass Transfer, 2019, 129: 18-27. |
11 | Ammann J, Michel B, Studart A R, et al. Sorption rate enhancement in SAPO-34 zeolite by directed mass transfer channels[J]. International Journal of Heat and Mass Transfer, 2019, 130: 25-32. |
12 | Calabrese L, Bonaccorsi L, Bruzzaniti P, et al. SAPO-34 based zeolite coatings for adsorption heat pumps[J]. Energy, 2019, 187: 115981. |
13 | Calabrese L, Paolo B, Davide P, et al. New SAPO-34-SPEEK composite coatings for adsorption heat pumps: adsorption performance and thermodynamic analysis [J]. Energy, 2020, 203: 117814. |
14 | Chan K C, Tso C Y, Wu C L, et al. Enhancing the performance of a zeolite 13X/CaCl2-water adsorption cooling system by improving adsorber design and operation sequence[J]. Energy and Buildings, 2018, 158: 1368-1378. |
15 | Kalawa W, Grabowska K, Sztekler K, et al. Progress in design of adsorption refrigeration systems. Evaporators[J]. EPJ Web of Conferences, 2019, 213: 02035. |
16 | Thimmaiah P C, Sharafian A, Rouhani M, et al. Evaluation of low-pressure flooded evaporator performance for adsorption chillers[J]. Energy, 2017, 122: 144-158. |
17 | Wang R Z, Xia Z Z, Wang L W, et al. Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy[J]. Energy, 2011, 36(9): 5425-5439. |
18 | Yang L P, Liu Y, Yang Y, et al. Microscopic mechanisms of heat transfer in horizontal-tube falling film evaporation[J]. Desalination, 2016, 394: 64-71. |
19 | Li W, Wu X Y, Luo Z, et al. Heat transfer characteristics of falling film evaporation on horizontal tube arrays[J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10): 1986-1993. |
20 | Xia Z Z, Yang G Z, Wang R Z. Experimental investigation of capillary-assisted evaporation on the outside surface of horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2008, 51(15/16): 4047-4054. |
21 | 赵凯璇, 赵建福, 陈淑玲, 等. 液滴真空闪蒸/冻结过程的热动力学研究[J]. 空间科学学报, 2011, 31(1): 57-62. |
Zhao K X, Zhao J F, Chen S L, et al. Thermodynamics of flashing/freezing process of a droplet in vacuum[J]. Chinese Journal of Space Science, 2011, 31(1): 57-62. | |
22 | Elsayed, Eman, AL-Dadah R, et al. Adsorption cooling system employing novel MIL-101(Cr)/CaCl2 composites: numerical study[J]. International Journal of Refrigeration, 2019, 107: 246-261. |
23 | Tso C Y, Chao C Y H, Fu S C. Performance analysis of a waste heat driven activated carbon based composite adsorbent - water adsorption chiller using simulation model[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7596-7610. |
24 | Li W, Wu X Y, Luo Z, et al. Falling water film evaporation on newly-designed enhanced tube bundles[J]. International Journal of Heat and Mass Transfer, 2011, 54(13/14): 2990-2997. |
25 | Wang Y, Yu L W, Zhang Y S, et al. Experimental study on circulatory flash speed of aqueous NaCl solution circulatory flash evaporation[J]. Desalination, 2016, 392: 74-84. |
26 | Yang Q Z, Zhao B C, Zhang D, et al. Experimental study on heat transfer characteristics in static flash evaporation of aqueous NaCl solution[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1093-1099. |
27 | Alva G, Liu L K, Huang X, et al. Thermal energy storage materials and systems for solar energy applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 693-706. |
[1] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[2] | 王兵兵, 王超, 徐志明. 圆筒电极抑制换热表面CaCO3污垢沉积特性研究[J]. 化工学报, 2022, 73(2): 634-642. |
[3] | 张舒蕾, 李冰杰, 蒋健, 董新宇, 刘璐. 凸面恒温基底上固着液滴蒸发特性研究[J]. 化工学报, 2022, 73(12): 5537-5546. |
[4] | 王刚, 赵琰. 土壤源热泵供暖间歇运行时间的计算分析[J]. 化工学报, 2020, 71(S1): 430-435. |
[5] | 刘坐东, 李斯琪, 邢维维, 徐志明. 板式换热器Ni-P-TiO2复合纳米镀层微生物污垢特性[J]. 化工学报, 2020, 71(8): 3535-3544. |
[6] | 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561. |
[7] | 张毅,张冠敏,冷学礼,屈晓航,田茂诚. 无霜空气源热泵技术研究进展[J]. 化工学报, 2020, 71(12): 5400-5419. |
[8] | 丛健,高蓬辉,张东海,周晋鹏,张正函. 超声波对液滴冻结状态及传热的影响[J]. 化工学报, 2020, 71(11): 5117-5128. |
[9] | 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137. |
[10] | 何洋, 王利民, 唐春丽, 车得福. H型翅片管湿烟气对流冷凝传热的数值模拟研究[J]. 化工学报, 2019, 70(12): 4556-4564. |
[11] | 周鹏飞, 张振涛, 章学来, 杨鲁伟, 魏娟, 刘鹏鹏. 热泵干燥过程中低温热泵补热的应用分析[J]. 化工学报, 2018, 69(5): 2032-2039. |
[12] | 胡琳彬, 李俊, 张亮, 叶丁丁, 朱恂. 双室微生物燃料电池阴阳极间水传递特性[J]. 化工学报, 2017, 68(S1): 150-154. |
[13] | 牛利娇, 王维, 潘思麒, 张大为, 陈国华. 具有预制孔隙多孔介质冷冻干燥的多相传递模型[J]. 化工学报, 2017, 68(5): 1833-1844. |
[14] | 张斌, 周孑民, 李茂. 双层配碳烧结过程的传热传质分析[J]. 化工学报, 2017, 68(5): 1811-1822. |
[15] | 李美军, 路源, 张士杰, 肖云汉. 水平管降膜吸收局部传热传质特性的数值模拟[J]. 化工学报, 2017, 68(4): 1364-1372. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||