化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5117-5128.DOI: 10.11949/0438-1157.20200301
丛健1(),高蓬辉1,2(
),张东海1,2,周晋鹏3,张正函3
收稿日期:
2020-03-23
修回日期:
2020-06-11
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
高蓬辉
作者简介:
丛健(1995—),男,硕士研究生,基金资助:
Jian CONG1(),Penghui GAO1,2(
),Donghai ZHANG1,2,Jinpeng ZHOU3,Zhenghan ZHANG3
Received:
2020-03-23
Revised:
2020-06-11
Online:
2020-11-05
Published:
2020-11-05
Contact:
Penghui GAO
摘要:
超声波辅助冻结在食品、医疗及生物化学等领域得到了广泛的应用,为了明确超声波对溶液冻结过程中液固比例、孔隙率的影响,揭示冻结过程中热量的传递规律,在液滴冻结状态实验观测的基础上,结合声学及热质传递理论,建立了超声波液滴冻结理论模型,分析了超声波对液滴冻结状态的影响,比较了超声空化效应所引起的传质散热量和超声热效应引起的产热量的大小关系。结果表明:超声波有助于液滴表面的气泡逸出,气泡逸出率越大冻结过程中液固比例越小;当气泡逸出率一定时,液滴越小冻结过程中的孔隙率越大;超声波一定时,逸出率越小冻结过程中的孔隙率越大;对于冷却冻结过程,不同频率和强度的超声波存在合理的超声波加载时间。
中图分类号:
丛健,高蓬辉,张东海,周晋鹏,张正函. 超声波对液滴冻结状态及传热的影响[J]. 化工学报, 2020, 71(11): 5117-5128.
Jian CONG,Penghui GAO,Donghai ZHANG,Jinpeng ZHOU,Zhenghan ZHANG. Effect of ultrasonic on freezing state and heat transfer of droplet[J]. CIESC Journal, 2020, 71(11): 5117-5128.
Parameter | Symbol | Unit | Value |
---|---|---|---|
ultrasonic frequency | f | Hz | 30000/35000/40000 |
ultrasonic intensity | I | W?m-2 | 600/800/1000 |
sound velocity | c | m?s-1 | 1480 |
bubble overflow rate | φ | 1 | 0.10/0.05/0.01 |
ambient temperature | T∞ | K | 258.15 |
droplet’s initial temperature | T1 | K | 288.15 |
droplet’s diameter | D | mm | 2.0/2.5/3.0 |
diffusion coefficient | DV | m2?s-1 | 2.55×10-5 |
ambient air velocity | u | m?s-1 | 0.1 |
表1 计算参数
Table 1 Parameters of the model
Parameter | Symbol | Unit | Value |
---|---|---|---|
ultrasonic frequency | f | Hz | 30000/35000/40000 |
ultrasonic intensity | I | W?m-2 | 600/800/1000 |
sound velocity | c | m?s-1 | 1480 |
bubble overflow rate | φ | 1 | 0.10/0.05/0.01 |
ambient temperature | T∞ | K | 258.15 |
droplet’s initial temperature | T1 | K | 288.15 |
droplet’s diameter | D | mm | 2.0/2.5/3.0 |
diffusion coefficient | DV | m2?s-1 | 2.55×10-5 |
ambient air velocity | u | m?s-1 | 0.1 |
图11 不同超声波频率下传质散热量和超声波热效应产热量
Fig.11 Heat dissipation induced by ultrasonic cavitation and heat generated by thermal effect in different ultrasonic frequency
图12 不同气泡逸出率下超声空化引起的传质散热量和超声热效应产热量的变化
Fig.12 Heat dissipation induced by ultrasonic cavitation and heat generated by thermal effect in different bubble overflow rate
1 | Dong M, Qin L, Ma L X, et al. Postmortem nucleotide degradation in turbot mince during chill and partial freezing storage[J]. Food Chemistry, 2019, 311: 1-36. |
2 | 马善军, 李鹏辉, 孔令健, 等. 蒸发式过冷水制冰液滴蒸发结晶的模拟[J]. 农业工程学报, 2016, 32(23): 213-217. |
Ma S J, Li P H, Kong L J, et al. Modeling of water droplet in super-cooling water evaporative system for ice slurry production[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 213-217 | |
3 | Alex L, Bakul B, Robert W, et al. Drying technologies for biopharmaceutical applications: recent developments and future direction[J]. Drying Technology, 2018, 36(6): 677-684. |
4 | 杜王芳, 赵建福, 李凯. 快速减压过程中液滴闪蒸/冻结现象实验研究[C]//第九届全国实验流体力学学术会议. 2013. |
Du W F, Zhao J F, Li K. Experimental study on flashing-freezing phenomena of liquid droplet during quick depressurization[C]// The 9th National Experimental Fluid Mechanics Conference. 2013. | |
5 | Sebastiao I B, Bhatnagar B, Tchessalov S, et al. Bulk dynamic spray freeze-drying (1) : Modeling of droplet cooling and phase change[J]. Journal of Pharmaceutical Sciences, 2019, 108(6): 2063-2074. |
6 | Isleroglu H, Turker I, Tokatli M, et al. Ultrasonic spray-freeze drying of partially purified microbial transglutaminase[J]. Food and Bioproducts Processing, Institution of Chemical Engineers, 2018, 111: 153-164. |
7 | Hickling R. Nucleation and freezing by cavity collapse and its relation to cavitation damage[J]. Nature, 1965, 206(4987): 915-917. |
8 | Hozumi T, Saito A, Okawa S, et al. Freezing phenomena of supercooled water under impacts of ultrasonic waves[J]. International Journal of Refrigeration, 2002, 25(7): 948-953. |
9 | Jia L S, Cui W, Chen Y, et al. Effect of ultrasonic power on super-cooling of TiO2 nanoparticle suspension[J]. International Journal of Heat Mass Transfer, 2018, 120: 909-913. |
10 | Shi Z, Zhong S, Yan W, et al. The effects of ultrasonic treatment on the freezing rate, physicochemical quality, and microstructure of the back muscle of grass carp (Ctenopharyngodon idella)[J]. Lebensmittel-Wissenschaft und-Technologie, 2019, 111(70): 301-308. |
11 | Kawasaki K, Matsuda A, Kadota H. Freeze concentration of equal molarity solutions with ultrasonic irradiation under constant freezing rate: effect of solute[J]. Chemical Engineering Research and Design, 2006, 84(A2): 107-112. |
12 | Hu F, Sun D W, Gao W, et al. Effects of pre-existing bubbles on ice nucleation and crystallization during ultrasound-assisted freezing of water and sucrose solution[J]. Innovative Food Science and Emerging Technologies, 2013, 20: 161-166. |
13 | Xin Y, Zhang M, Xu B, et al. Research trends in selected blanching pretreatments and quick freezing technologies as applied in fruits and vegetables: a review[J]. International Journal of Refrigeration, 2015, 57: 11-25. |
14 | Islam N, Zhang M, Fang Z, et al. Direct contact ultrasound assisted freezing of mushroom ( Agaricus bisporus ): growth and size distribution of ice crystals[J]. International Journal of Refrigeration, 2015, 57: 46-53. |
15 | Gondrexon N, Cheze L, Jin Y, et al. Ultrasonics Sonochemistry Intensification of heat and mass transfer by ultrasound : application to heat exchangers and membrane separation processes[J]. Ultrasonics-Sonochemistry, 2015, 25: 40-50. |
16 | 马空军, 吴晓霞, 张华余, 等. 超声空化引起界面湍动促进的传质机理[J]. 应用声学, 2013, 32(5): 348-353. |
Ma K J, Wu X X, Zhang H Y, et al. Mechanisms of enhanced mass transfer induced by interfacial turbulence under ultrasonic cavitation[J]. Applied Acoustics, 2013, 32(5): 348-353. | |
17 | Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine, 1917, 34(200): 94-98. |
18 | Plesset M S, Prosperetti A. Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics, 1974, 9(1): 145-185. |
19 | Noltingk B E, Neppiras E A. Cavitation produced by ultrasonies[J]. Proceedings of the Physical Society, Section B, 1950, 63(9): 674-685. |
20 | Gilmore F R. The growth and collapse of a spherical bubble in a viscous compressible liquid[J]. California Institute of Tech Engineering Report, 1952, 26(4): 1-40. |
21 | 马空军, 黄玉代, 贾殿赠, 等. 超声空化泡相界面逸出时相间传质的研究[J]. 声学技术, 2008, 27(4): 486-491. |
Ma K J, Huang Y D, Jia D Z, et al. A study of mass transfer induced by ultrasonic gas cavities evolving from phase interface[J]. Technical Acoustics, 2008, 27(4): 486-491. | |
22 | 李祥斌, 赵月春, 徐科峰, 等. 超声场条件下两种扩散系数估算模型的比较[J]. 华南理工大学学报(自然科学版), 2002, 30(7): 39-43. |
Li X B, Zhao Y C, Xu K F, et al. Comparison between two estimation models of diffusion coefficient in ultrasound field[J]. Journal of South China University of Technology(Natural Science Edition), 2002, 30(7): 39-43. | |
23 | 程新峰. 低频超声波辅助提高冷冻草莓加工全过程品质及效率的研究[D]. 无锡: 江南大学, 2014. |
Cheng X F. Study on quality and efficiency of the whole handling process of frozen strawberry enhanced by low-frequency ultrasound[D]. Wuxi: Jiangnan University, 2014. | |
24 | Li B, Sun D W. Effect of power ultrasound on freezing rate during immersion freezing on potatoes[J]. Journal of Food Engineering, 2002, 55(3): 277-282. |
25 | Modak V P, Amaya A J, Wyslouzil B E. Freezing of supercooled n-decane nanodroplets: from surface driven to frustrated crystallization[J]. Phisical Chemistry Chemical Physics, 2017, 19(44): 30181-30194. |
26 | Petrich C, Langhorne P J, Sun Z F. Modelling the interrelationships between permeability, effective porosity and total porosity in sea ice[J]. Cold Regions Science and Technology, 2006, 44(2): 131-144. |
27 | Maksym T, Jeffries M O. A one-dimensional percolation model of flooding and snow ice formation on Antarctic sea ice[J]. Journal of Geophysical Research: Oceans, 2000, 105(C11): 26313-26331. |
28 | Eicken H, Grenfell T C, Perovich D K, et al. Hydraulic controls of summer Arctic pack ice albedo[J]. Journal of Geophysical Research C: Oceans, 2004, 109(8): 1-13. |
29 | 高蓬辉, 张梦, 杜玉吉, 等. 超声波作用下液滴的冷却冻结规律[J]. 化工学报, 2017, 68(11): 4095-4104. |
Gao P H, Zhang M, Du Y J, et al. Cooling and freezing law for liquid drop in ultrasound wave[J]. CIESC Journal, 2017, 68(11): 4095-4104. | |
30 | 刘岩. 两种不同类型的声场与声化学产额的关系[J]. 物理化学学报, 2001, 17(11): 1031-1035. |
Liu Y. SonochemicaI reaction in pulsed ultrasonic field and continuous ultrasonic field[J]. Acta Physico-Chemica Sinica, 2001, 17(11): 1031-1035. | |
31 | 胡松青, 李琳, 陈玲, 等. 功率超声作用下溶液温度变化的数学模拟[J]. 华南理工大学学报(自然科学版), 2007, (4): 62-65. |
Hu S Q, Li L, Chen L, et al. Mathematical simulation of temperature variation of solution irradiated by power ultrasound[J]. Journal of South China University of Technology (Natural Science Edition), 2007, (4): 62-65. | |
32 | 髙蓬辉, 衡文佳, 周兴业,等. 临界条件(0℃)下溶液蒸发冷冻过程中的传质规律[J]. 化工学报, 2013, 64(9): 3206-3212. |
Gao P H, Heng W J, Zhou X Y, et al. Mass transfer of liquor in evaporation-refrigeration process under critical condition[J]. CIESC Journal, 2013, 64(9): 3206-3212. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 王倩倩, 刘明言, 马永丽. 水中超声波脱气的效应研究[J]. 化工学报, 2023, 74(4): 1693-1702. |
[4] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[5] | 王兵兵, 王超, 徐志明. 圆筒电极抑制换热表面CaCO3污垢沉积特性研究[J]. 化工学报, 2022, 73(2): 634-642. |
[6] | 张舒蕾, 李冰杰, 蒋健, 董新宇, 刘璐. 凸面恒温基底上固着液滴蒸发特性研究[J]. 化工学报, 2022, 73(12): 5537-5546. |
[7] | 敬鹏程, 陈立涛, 闫传梁, 姜传祥, 夏煜翔, 于常宏, 王昊天. 超声波悬浮TBAB溶液液滴表面半笼型水合物生长过程研究[J]. 化工学报, 2022, 73(11): 4893-4902. |
[8] | 林伟翔, 苏港川, 陈强, 文键, 王斯民. 基于超声技术的沉浸式换热器强化传热研究[J]. 化工学报, 2021, 72(8): 4055-4063. |
[9] | 牟新竹, 陈振乾. 污泥厚度对超声波辅助热风干燥污泥特性的影响[J]. 化工学报, 2020, 71(S2): 241-252. |
[10] | 刘坐东, 李斯琪, 邢维维, 徐志明. 板式换热器Ni-P-TiO2复合纳米镀层微生物污垢特性[J]. 化工学报, 2020, 71(8): 3535-3544. |
[11] | 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561. |
[12] | 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071. |
[13] | 张毅,张冠敏,冷学礼,屈晓航,田茂诚. 无霜空气源热泵技术研究进展[J]. 化工学报, 2020, 71(12): 5400-5419. |
[14] | 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137. |
[15] | 马密霞, 秦宁, 闵清, 胡文祥. 微波超声波联用萃取白藜芦醇及其苷的HPLC测定[J]. 化工学报, 2019, 70(S1): 124-129. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 225
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 556
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||