化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5400-5419.DOI: 10.11949/0438-1157.20200268
收稿日期:
2020-03-16
修回日期:
2020-06-28
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
张冠敏
作者简介:
张毅(1988—),男,博士研究生,基金资助:
ZHANG Yi1(),ZHANG Guanmin1(
),LENG Xueli1,QU Xiaohang2,TIAN Maocheng1
Received:
2020-03-16
Revised:
2020-06-28
Online:
2020-12-05
Published:
2020-12-05
Contact:
ZHANG Guanmin
摘要:
在传统空气源热泵(ASHP)机组上耦合空气除湿设备,实现其无霜连续高效稳定运行,有利于ASHP在低温高湿度地区清洁供暖中的推广应用。在对三类结霜过程进行分析的基础上,总结了各种无霜ASHP技术原理,并将其分为三大类:固体除湿型无霜技术、液体除湿型无霜技术和其他无霜技术。重点概括了固体和液体除湿型无霜ASHP技术的研究现状。指出了各种无霜技术存在的问题及局限性并给出了推荐研究和不同环境条件下的发展优先级,提出今后应主导做好影响无霜热泵系统投资成本和运行性能相关的各方面研究,进而开发性能良好且地域限制较小的多功能无霜ASHP技术。
中图分类号:
张毅,张冠敏,冷学礼,屈晓航,田茂诚. 无霜空气源热泵技术研究进展[J]. 化工学报, 2020, 71(12): 5400-5419.
ZHANG Yi,ZHANG Guanmin,LENG Xueli,QU Xiaohang,TIAN Maocheng. Research progress on frost-free air source heat pump technology[J]. CIESC Journal, 2020, 71(12): 5400-5419.
图5 蓄热除湿耦合型无霜空气源热泵热水器示意图[49-50]
Fig.5 Schematic diagram of a novel frost-free ASHP water heater system coupling with thermal storage and dehumidification[49-50]
图6 蓄热除湿型无霜空气源热泵系统主要部件损失率[55]
Fig.6 Exergy loss rates of main components of a frost-free ASHP system coupling with thermal storage and dehumidification[55]
系统 | 开式系统 | 闭式系统 | 改进系统 |
---|---|---|---|
优点 | 气液直接接触换热效率高;结构简单、造价低 | 多数液体走管内,液体不会漂失;喷淋液冰点稳定 | 气液直接接触换热效率高;管内液体不会漂失;冬季冰点稳定 |
缺点 | 液体漂失严重;冬季溶液冰点不稳定;再生装置体积大 | 气液间接换热效率低;喷淋液存在少量漂失问题 | 针对三种不同的复合式或改进型系统缺点不一致,详见文献[ |
表1 三种热源塔热泵系统的优缺点
Table 1 Advantages and disadvantages of three heat-source tower heat pump systems
系统 | 开式系统 | 闭式系统 | 改进系统 |
---|---|---|---|
优点 | 气液直接接触换热效率高;结构简单、造价低 | 多数液体走管内,液体不会漂失;喷淋液冰点稳定 | 气液直接接触换热效率高;管内液体不会漂失;冬季冰点稳定 |
缺点 | 液体漂失严重;冬季溶液冰点不稳定;再生装置体积大 | 气液间接换热效率低;喷淋液存在少量漂失问题 | 针对三种不同的复合式或改进型系统缺点不一致,详见文献[ |
文献 | 传热传质关联式 | 注释 |
---|---|---|
Wen 等[ | 200 m3/h≤Ga≤650 m3/h,2 kg/min≤Gs≤6.5 kg/min,7℃≤Ta≤17℃,-2.5℃≤Ts≤11℃ | |
刘成兴等[ | Gs=0.6 kg/s, Ga=2.4 kg/s | |
Cui等[ | ||
Huang等[ | 2.32 kg/(m2·s)≤Gs≤4.30 kg/(m2·s), 1.43 kg/(m2·s)≤Ga≤3.31 kg/(m2·s) | |
Huang等[ | 2.42 kg/(m2·s)≤Gs≤4.44 kg/(m2·s),1.45 kg/(m2·s)≤Ga≤3.27 kg/(m2·s) | |
Lu等[ | L=5000 mm,B=3300 mm,D=30 mm | |
Huang等[ | D=20 mm,L=1960 mm, B=1200 mm,H=580 mm, 0.6≤Pr≤100, 0.6≤Sc≤2500 | |
Su等[ | 1.45 kg/(m2·s)≤Gs≤4.22 kg/(m2·s), 1.89 kg/(m2·s)≤Ga≤4.40 kg/(m2·s), 23.6%≤χ≤35% | |
Liu等[ |
表2 开式热源塔内气液传热传质系数关联式
Table 2 Correlations of heat and mass transfer coefficients between gas and liquid in open-type heat-source tower
文献 | 传热传质关联式 | 注释 |
---|---|---|
Wen 等[ | 200 m3/h≤Ga≤650 m3/h,2 kg/min≤Gs≤6.5 kg/min,7℃≤Ta≤17℃,-2.5℃≤Ts≤11℃ | |
刘成兴等[ | Gs=0.6 kg/s, Ga=2.4 kg/s | |
Cui等[ | ||
Huang等[ | 2.32 kg/(m2·s)≤Gs≤4.30 kg/(m2·s), 1.43 kg/(m2·s)≤Ga≤3.31 kg/(m2·s) | |
Huang等[ | 2.42 kg/(m2·s)≤Gs≤4.44 kg/(m2·s),1.45 kg/(m2·s)≤Ga≤3.27 kg/(m2·s) | |
Lu等[ | L=5000 mm,B=3300 mm,D=30 mm | |
Huang等[ | D=20 mm,L=1960 mm, B=1200 mm,H=580 mm, 0.6≤Pr≤100, 0.6≤Sc≤2500 | |
Su等[ | 1.45 kg/(m2·s)≤Gs≤4.22 kg/(m2·s), 1.89 kg/(m2·s)≤Ga≤4.40 kg/(m2·s), 23.6%≤χ≤35% | |
Liu等[ |
1 | Staffell I, Brett D, Brandon N, et al. A review of domestic heat pumps[J]. Energy & Environmental Science, 2012, 5 (11): 9291-9306. |
2 | 柴沁虎, 马国远. 空气源热泵低温适应性研究的现状及进展[J]. 能源工程, 2002, (5): 25-31. |
Chai Q H, Ma G Y. State of knowledge and current challenges in the ASHP developed for the cold areas[J]. Energy Engineering, 2002, (5): 25-31. | |
3 | Li S, Gong G, Peng J. Dynamic coupling method between air-source heat pumps and buildings in Chinas hot-summer/cold-winter zone[J]. Applied Energy, 2019, 254: 113664. |
4 | Zhang Q, Zhang L, Nie J, et al. Techno-economic analysis of air source heat pump applied for space heating in northern China[J]. Applied Energy, 2017, 207: 533-542. |
5 | Zhu J H, Sun Y Y, Wang W, et al. Developing a new frosting map to guide defrosting control for air-source heat pump units[J]. Applied Thermal Engineering, 2015, 90: 782-791. |
6 | Zhang Y, Zhang G, Zhang A, et al. Frosting phenomenon and frost-free technology of outdoor air heat exchanger for an air-source heat pump system in China: an analysis and review[J]. Energies, 2018, 11(10): 2642. |
7 | 张毅, 张冠敏, 张莉莉, 等. 空气源热泵结霜机理及除霜/抑霜技术研究进展[J]. 制冷学报, 2018, 39(5): 13-24+49. |
Zhang Y, Zhang G M, Zhang L L, et al. Research progress on frost formation mechanism of air-source heat pump and its defrosting/anti-frosting technology[J]. Journal of Refrigeration, 2018, 39(5): 13-24+49. | |
8 | 邢震, 郭宪民, 李景善. 基于平均性能最优的空气源热泵除霜控制方法的研究[J]. 制冷学报, 2016, 37(3): 17-21. |
Xing Z, Guo X M, Li J S. Study on the defrosting control method based on the optimal average performance of an air source heat pump[J]. Journal of Refrigeration, 2016, 37(3): 17-21. | |
9 | 曲明璐, 陈剑波. 融化水流动对空气源热泵换向除霜影响的模型研究[J]. 太阳能学报, 2015, 36(7): 1678-1683. |
Qu M L, Chen J B. A modeling study on the effects of downwords flowing of the melt frost on reverse cycle defrosting for an air source heat pump[J]. Acta Energiae Solaris Sinica, 2015, 36(7): 1678-1683. | |
10 | 董建锴, 姜益强, 姚杨, 等. 空气源热泵相变蓄能除霜系统实验研究[J]. 太阳能学报, 2010, 31(4): 428-431. |
Dong J K, Jiang Y Q, Yao Y, et al. Research on ASHP system with phase change energy storage defrost system[J]. Acta Energiae Solaris Sinica, 2010, 31(4): 428-431. | |
11 | Sheng W, Liu P, Dang C, et al. Review of restraint frost method on cold surface[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 806-813. |
12 | Amer M, Wang C C. Review of defrosting methods[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 53-74. |
13 | 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 370-378. |
Qiu J J, Zhang X S, Li W H. Experimental research on a novel frost-free air source heat pump system[J]. CIESC Journal, 2019, 70(4): 370-378. | |
14 | 贾宇豪, 李念平, 崔海蛟, 等. 冬季无霜工况下闭式热源塔的动态换热特性[J]. 土木与环境工程学报, 2019, 41(3): 165-172. |
Jia Y H, Li N P, Cui H J, et al. Dynamic heat transfer performance of closed-type heat source towers under non-frosting conditions in winter[J]. Journal of Civil and Environmental Engineering, 2019, 41(3): 165-172. | |
15 | Su W, Li H, Sun B, et al. Performance investigation on a frost-free air source heat pump system employing liquid desiccant dehumidification and compressor-assisted regeneration based on exergy and exergoeconomic analysis[J]. Energy Conversion and Management, 2019, 183: 167-181. |
16 | Liu M, Jiang L, Zhang H, et al. An exploration on the applicability of heating tower heat pump and air source heat pump systems in different climatic regions[J]. Journal of Cleaner Production, 2019, 238: 117889. |
17 | 付慧影, 姜益强, 姚杨, 等. 喷淋溶液对无霜空气源热泵系统特性的影响[J]. 化工学报, 2012, 63: 193-198. |
Fu H Y, Jiang Y Q, Yao Y, et al. Influent of spray solution on novel non-frosting air source heat pump system performance[J]. CIESC Journal, 2012, 63: 193-198. | |
18 | 张凡, 吴薇, 王琴, 等. 一种复合型无霜空气源热泵系统性能分析[J]. 暖通空调, 2015, 45(12): 82-87. |
Zhang F, Wu W, Wang Q, et al. Performance analysis of frost-free air source heat pump system integrated with liquid desiccant[J]. Journal of HV&AC, 2015, 45(12): 82-87. | |
19 | 沈九兵, 李自强, 邢子文, 等. 空气源热泵系统无霜化及除霜方法概述[J]. 制冷学报, 2019, 40(2): 88-97+107. |
Shen J B, Li Z Q, Xing Z W, et al. Review of frost-free and defrost methods for air-source heat pump systems[J]. Journal of Refrigeration, 2019, 40(2): 88-97+107. | |
20 | Wang Z, Wang F, Ma Z, et al. Experimental performance analysis and evaluation of a novel frost-free air source heat pump system[J]. Energy and Buildings, 2018, 175: 69-77. |
21 | Wang Z, Wang F, Ma Z, et al. Numerical study on the operating performances of a novel frost-free air-source heat pump unit using three different types of refrigerant[J]. Applied Thermal Engineering, 2017, 112: 248-258. |
22 | Jiang Y, Fu H, Yao Y, et al. Experimental study on concentration change of spray solution used for a novel non-frosting air source heat pump system[J]. Energy and Buildings, 2014, 68: 707-712. |
23 | 张晨, 杨洪海, 刘秋克, 等. 开式热源塔在热泵系统中的应用分析[J]. 能源研究与信息, 2010, 26(1): 52-56. |
Zhang C, Yang H H, Liu Q K, et al. Application of an open-type heat-source tower in the heat pump system[J]. Energy Research and Information, 2010, 26(1): 52-56. | |
24 | 张晨, 杨洪海, 刘秋克, 等. 闭式热源塔用作空调冷热源的分析[J]. 建筑热能通风空调, 2009, 28(6): 71-73. |
Zhang C, Yang H H, Liu Q K, et al. Analysis of closed-type heat-source tower used in air conditioning system[J]. Building Energy & Environment, 2009, 28(6): 71-73. | |
25 | Zendehboudi A, Song P, Li X. Performance investigation of the cross-flow closed-type heat-source tower using experiments and an adaptive neuro-fuzzy inference system model[J]. Energy and Buildings, 2019, 183: 340-355. |
26 | Song P, Xiao H, Shi W, et al. Experimental investigation on closed-type heating tower using glycerol solution[J]. International Journal of Refrigeration, 2019, 99: 272-287. |
27 | Su W, Li W, Sun B, et al. Experimental study and correlations for heat and mass transfer coefficients in the dehumidifier of a frost-free heat pump system[J]. International Journal of Heat and Mass Transfer, 2019, 131: 450-462. |
28 | Huang S, Ye Y, Han X, et al. Performance evaluation of heating tower heat pump systems over the world[J]. Energy Conversion and Management, 2019, 186: 500-515. |
29 | 文先太, 梁彩华, 刘成兴, 等. 基于空气能量回收的热源塔溶液再生系统节能性分析[J]. 化工学报, 2011, 62(11): 3242-3247. |
Wen X T, Liang C H, Liu C X, et al. Energy-saving analysis of solution regeneration in heat-source tower based on recovery of air energy[J]. CIESC Journal, 2011, 62(11): 3242-3247. | |
30 | 文先太, 梁彩华, 张小松, 等. 热源塔传质特性的分析和实验研究[J]. 化工学报, 2011, 62(4): 901-907. |
Wen X T, Liang C H, Zhang X S, et al. Mass transfer characteristics in heat-source tower[J]. CIESC Journal, 2011, 62(4): 901-907. | |
31 | 张晨, 杨洪海, 吴建兵, 等. 三种典型结构热源塔的比较[J]. 制冷与空调, 2009, 9(6): 81-83+75. |
Zhang C, Yang H H, Wu J B, et al. Comparison of three typical heat-source towers with different structures[J]. Refrigeration and Air-conditioning, 2009, 9(6): 81-83+75. | |
32 | Niitsu Y, Naito K, Anzai T. Studies on characteristics and design procedure of evaporative coolers[J]. Journal of SHASE, Japan, 1969, 43(7): 581-590. |
33 | 贺志明, 李念平, 成剑林, 等. 喷淋工况下闭式热源塔传热特性[J]. 土木建筑与环境工程, 2015, 37(1): 35-39+54. |
He Z M, Li N P, Cheng J L, et al. Performance of closed heat source tower under spraying conditions[J]. Journal of Civil and Environmental Engineering, 2015, 37(1): 35-39+54. | |
34 | 徐煦, 曲凯阳, 段远源. 两类结霜过程的实验研究[J]. 制冷学报, 2002, 23(4): 1-4. |
Xu X, Qu K Y, Duan Y Y. Experimental study on two types of the frost formation[J]. Journal of Refrigeration, 2002, 23(4): 1-4. | |
35 | Tkachev S N, Nasimov R M, Kalinin V A. Phase diagram of water in the vicinity of the triple point[J]. The Journal of Chemical Physics, 1996, 105(9): 3722-3725. |
36 | Brèque F, Nemer M. Frosting modeling on a cold flat plate: comparison of the different assumptions and impacts on frost growth predictions[J]. International Journal of Refrigeration, 2016, 69: 340-360. |
37 | Sun B, Ghatage S, Evans G M, et al. Dynamic study of frost formation on cryogenic surface[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119372. |
38 | Zhang L, Fujinawa T, Saikawa M. A new method for preventing air-source heat pump water heaters from frosting[J]. International Journal of Refrigeration, 2012, 35(5): 1327-1334. |
39 | 姚杨, 姜益强, 高强. 无霜空气源热泵系统初步实验研究[J]. 建筑科学, 2012, (s2): 198-199. |
Yao Y, Jiang Y Q, Gao Q. Experimental study on an frost-free air source heat pump system[J]. Building Science, 2012, (s2): 198-199. | |
40 | 魏小清, 李念平, 彭晋卿, 等. 实验调查不同水溶液对闭式热源塔热泵系统能效的影响[C]//2014~2015年湖南省暖通空调制冷学术年会. 2015: 2-12. |
Wei X Q, Li N P, Peng J Q, et al. Experimental investigation of the effect of different aqueous solutions on the energy efficiency of closed heat source tower heat pump system[C]//2014—2015 Hunan HVAC Academic Conference. 2015: 2-12. | |
41 | 刘秋克, 王武英. 热源塔热泵低热能再生技术在我国南方的应用[J]. 建设科技, 2008, (15): 124-125. |
Liu Q K, Wang W Y. Application of low heat energy regeneration technology of heat source tower heat pump in South China[J]. Construction Science and Technology, 2008, (15): 124-125. | |
42 | Zhang Z, Zhang C, Ge M, et al. A frost-free dedicated outdoor air system with exhaust air heat recovery[J]. Applied Thermal Engineering, 2018, 128: 1041-1050. |
43 | 姜益强, 姚杨, 马最良. 空气源热泵结霜除霜损失系数的计算[J]. 暖通空调, 2000, 30(5): 24-26. |
Jiang Y Q, Yao Y, Ma Z L. Calculation of the loss coefficient for frosting-defrosting of air source heat pumps[J]. Journal of HV&AC, 2000, 30(5): 24-26. | |
44 | Kwak K, Bai C. A study on the performance enhancement of heat pump using electric heater under the frosting condition: heat pump under frosting condition[J]. Applied Thermal Engineering, 2010, 30(6): 539-543. |
45 | Mader G, Thybo C. A new method of defrosting evaporator coils[J]. Applied Thermal Engineering, 2012, 39: 78-85. |
46 | Ge T S, Dai Y J, Wang R Z, et al. Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers[J]. Energy, 2010, 35(7): 2893-2900. |
47 | Wang S W, Liu Z Y. A new method for preventing HP from frosting[J]. Renewable Energy, 2005, 30(5): 753-761. |
48 | Shimooka S, Oshima K, Hidaka H, et al. The evaluation of direct cooling and heating desiccant device coated with FAM[J]. Journal of Chemical Engineering of Japan, 2007, 40(13): 1330-1334. |
49 | Wang Z, Zheng Y, Wang F, et al. Experimental analysis on a novel frost-free air-source heat pump water heater system[J]. Applied Thermal Engineering, 2014, 70(1): 808-816. |
50 | 王志华, 王沣浩, 郑煜鑫, 等. 一种新型无霜空气源热泵热水器实验研究[J]. 制冷学报, 2015, 36(1): 52-58. |
Wang Z H, Wang F H, Zheng Y X, et al. Experimental research on a novel frost-free air-source heat pump water heater system[J]. Journal of Refrigeration, 2015, 36(1): 52-58. | |
51 | 郝鹏飞, 王沣浩, 王志华, 等. 蓄热除湿耦合型无霜空气源热泵热水器实验研究[J]. 制冷学报, 2015, 36(4): 85-91. |
Hao P F, Wang F H, Wang Z H, et al. Experimental research on a novel frost-free air-source heat pump water heater system coupling with thermal storage and dehumidification[J]. Journal of Refrigeration, 2015, 36(4): 85-91. | |
52 | Wang F, Wang Z, Zheng Y, et al. Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification[J]. Applied Energy, 2015, 139: 212-219. |
53 | Wang Z, Wang F, Ma Z, et al. Performance evaluation of a novel frost-free air-source heat pump integrated with phase change materials(PCMs) and dehumidification[J]. Energy Procedia, 2017, 121: 134-141. |
54 | Wang Z, Song M, Wang F, et al. Experimental investigation and seasonal performance assessment of a frost-free ASHP system with radiant floor heating[J]. Energy and Buildings, 2018, 179: 200-212. |
55 | Wang Z, Wang F, Gao X, et al. Exergy analysis of a frost-free air source heat pump system[J]. Journal of Mechanical Science and Technology, 2019, 33(5): 2439-2450. |
56 | 唐前进, 柳建华, 宫晓彬, 等. 一种新型液体除湿空调的应用[J]. 暖通空调, 2008, 38(10): 78-81. |
Tang Q J, Liu J H, Gong X B, et al. Application of a novel liquid desiccant air conditioning system[J]. Journal of HV&AC, 2008, 38(10): 78-81. | |
57 | Kinsara A A, Elsayed M M, Al-Rabghi O M. Proposed energy-efficient air-conditioning system using liquid desiccant[J]. Applied Thermal Engineering, 1996, 16(10): 791-806. |
58 | Jain S, Bansal P K. Performance analysis of liquid desiccant dehumidification systems[J]. International Journal of Refrigeration, 2007, 30(5): 861-872. |
59 | Zhang L, Dang C, Hihara E. Performance analysis of a no-frost hybrid air conditioning system with integrated liquid desiccant dehumidification[J]. International Journal of Refrigeration, 2010, 33(1): 116-124. |
60 | Zhang L, Hihara E, Saikawa M. Combination of air-source heat pumps with liquid desiccant dehumidification of air[J]. Energy Conversion and Management, 2012, 57: 107-116. |
61 | 李玮豪, 邱君君, 张小松. 无霜空气源热泵系统冬季运行性能实验[J]. 化工学报, 2018, 69(12): 5220-5228. |
Li W H, Qiu J J, Zhang X S. Experimental research on new type of frost-free air source heat pump system in winter[J]. CIESC Journal, 2018, 69(12): 5220-5228. | |
62 | 李玮豪, 张小松. 新型无霜空气源热泵供热系统性能初步分析[J]. 建筑热能通风空调, 2019, 38(1): 1-6+33. |
Li W H, Zhang X S. Performance analysis of a new type of frost-free air source heat pump heating system[J]. Building Energy & Environment, 2019, 38(1): 1-6+33. | |
63 | 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季再生性能初步实验[J]. 制冷学报, 2019, 40(5): 26-31. |
Qiu J J, Zhang X S, Li W H. Experimental research on a frost-free air source heat pump[J]. Journal of Refrigeration, 2019, 40(5): 26-31. | |
64 | 李玮豪, 张小松. 无霜空气源热泵系统夏季运行性能初步实验[J]. 化工学报, 2018, 69(9): 3975-3982. |
Li W H, Zhang X S. Experimental research on a new type of frost-free air source heat pump system[J]. CIESC Journal, 2018, 69(9): 3975-3982. | |
65 | 邱君君, 张小松, 梁彩华. 采用两种常见除湿剂的新型无霜空气源热泵系统模拟研究[J]. 暖通空调, 2019, 49(4): 43-48. |
Qiu J J, Zhang X S, Liang C H. Novel frostless air-source heat pump system simulation using two common desiccants[J]. Journal of HV&AC, 2019, 49(4): 43-48. | |
66 | 冯荣, 孟欣, 邓建平, 等. 冷却塔逆用吸热做热源塔技术研究现状[J]. 化工进展, 2018, 37(11): 4135-4142. |
Feng R, Meng X, Deng J P, et al. Research progress on cooling tower reversibly used as heat source tower[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4135-4142. | |
67 | 李念平, 张鼎, 成剑林, 等. 热源塔热泵空调系统经济性分析[J]. 深圳大学学报(理工版), 2015, 32(4): 404-410. |
Li N P, Zhang D, Cheng J L, et al. Economic analysis of heat pump air conditioning system of heat-source tower[J]. Journal of Shenzhen University(Science and Engineering), 2015, 32(4): 404-410. | |
68 | 施申越, 李念平, 罗鹏举, 等. 长沙地区热源塔热泵辅助加热太阳能热水系统的性能分析[J]. 科学技术与工程, 2016, 16(33): 204-209. |
Shi S Y, Li N P, Luo P J, et al. Performance analysis of solar hot water system assisted by heat source tower heat pump in Changsha[J]. Science Technology and Engineering, 2016, 16(33): 204-209. | |
69 | 王伟, 马宏权. 能源塔热泵技术在南京空军454医院空调系统节能改造中的应用[J]. 建筑节能, 2010, (5): 52-54. |
Wang W, Ma H Q. Application of energy tower heat pump technology in the air conditioning system renovation of air force 454 Hospital in Nanjing[J]. Building Energy Efficiency, 2010, (5): 52-54. | |
70 | 宋应乾, 马宏权, 龙惟定. 能源塔热泵技术在空调工程中的应用与分析[J]. 暖通空调, 2011, 41(4): 20-23. |
Song Y Q, Ma H Q, Long W D. Application and analysis of energy tower heat pump technology in air conditioning engineering[J]. Journal of HV&AC, 2011, 41(4): 20-23. | |
71 | 梁明坤, 陈传宝, 刘伟. 板片蒸发冷凝式空气源热泵机组无霜制热的试验与验证[J]. 机械制造与自动化, 2016, (6): 70-73. |
Liang M K, Chen C B, Liu W. Test & verification of frostless heating of plate-type evaporation-condensation air-source heat pump unit[J]. Machine Building Automation, 2016, (6):70-73. | |
72 | 许国强, 黄德祥, 张旭东. 热源塔热泵在夏热冬暖地区的应用优势[J]. 制冷, 2016, 35(2): 52-57. |
Xu G Q, Huang D X, Zhang X D. The application advantage of heat-source-tower heat pump in hot summer and cold winter area[J]. Refrigeration, 2016, 35(2): 52-57. | |
73 | Lin T, Liang C H, Gao H, et al. Application of extremum entransy loss principle in optimization operation of heat source tower heat pump system[J]. Journal of Central South University(Natural Science Edition), 2017, 48(10): 2823-2829. |
74 | 结兄, 王慧娟, 冀瑞军, 等. 热源塔热泵在热力站做调峰热源的可行性分析[J]. 区域供热, 2018, (4): 122-127. |
Jie X, Wang H J, Ji R J, et al. The heat source tower heat pump is used for the feasibility analysis of a peak heating source at the heating station[J]. District Heating, 2018, (4): 122-127. | |
75 | 陈伟, 屈利娟, 汪超, 等. 盐水聚能塔式空气源热泵热水系统性能[J]. 浙江大学学报(工学版), 2012, 46(8): 1485-1489+1533. |
Chen W, Qu L J, Wang C, et al. An experimental investigation of the performance of an air-source heat pump hot-water system based on saltwater energy towers[J]. Journal of Zhejiang University(Engineering Edition), 2012, 46(8): 1485-1489+1533. | |
76 | 梁彩华, 文先太, 张小松. 基于热源塔的热泵系统构建与试验[J]. 化工学报, 2010, 61: 142-146. |
Liang C H, Wen X T, Zhang X S. Construction and experimental research on heat pump system based on heat-source tower[J]. CIESC Journal, 2010, 61: 142-146. | |
77 | Huang S, Zuo W, Lu H, et al. Performance comparison of a heating tower heat pump and an air-source heat pump: a comprehensive modeling and simulation study[J]. Energy Conversion and Management, 2019, 180: 1039-1054. |
78 | Huang S, Lu X, Zuo W, et al. Model-based optimal operation of heating tower heat pump systems[J]. Building and Environment, 2019, 160: 106199. |
79 | Chargui R, Sammouda H, Farhat A. Numerical simulation of a cooling tower coupled with heat pump system associated with single house using TRNSYS[J]. Energy Conversion and Management, 2013, 75: 105-117. |
80 | Nishimura H. Characteristics of heat and moisture transfer in crossflow type heating towers[J]. Journal of Architecture and Planning, 1995, 60(470): 45-52. |
81 | Zhang L, Liu X, Wei H, et al. Experimental study and analysis of heat and mass transfer ability of counter-flow packing tower and liquid desiccant dehumidification system[J]. Energy and Buildings, 2018, 158: 150-161. |
82 | Tan K, Deng S. A method for evaluating the heat and mass transfer characteristics in a reversibly used water cooling tower(RUWCT) for heat recovery[J]. International Journal of Refrigeration, 2002, 25(5): 552-561. |
83 | 吕珍余, 梁彩华, 黄世芳, 等. 孔板波纹填料热源塔的热质传递性能[J]. 中南大学学报(自然科学版), 2018, 49(4): 239-246. |
Lyu Z Y, Liang C H, Huang S F, et al. Heat and mass transfer performance of porous corrugated packing in heat-source tower[J]. Journal of Central South University(Natural Science Edition), 2018, 49(4): 239-246. | |
84 | 贾纪康, 李念平, 彭晋卿, 等. 基于ε-NTU法的横流热源塔热质交换模型[J]. 制冷学报, 2019, 40(4): 66-73. |
Jia J K, Li N P, Peng J Q, et al. Heat and mass transfer model of a cross-flow heat-source tower based on the ɛ-NTU method[J]. Journal of Refrigeration, 2019, 40(4): 66-73. | |
85 | Wen X, Liang C, Zhang X. Experimental study on heat transfer coefficient between air and liquid in the cross-flow heat-source tower[J]. Building and Environment, 2012, 57: 205-213. |
86 | 刘成兴, 梁彩华, 文先太, 等. 逆流热源塔传热传质模型建立与凝水调节的可行性[J]. 东南大学学报(自然科学版), 2013, 43(4): 788-792. |
Liu C X, Liang C H, Wen X T, et al. Modeling of heat and mass transfer in counterflow heat-source tower and feasibility study of moisture condensation control [J]. Journal of Southeast University(Natural Science Edition), 2013, 43(4): 788-792. | |
87 | Cui H, Li N, Peng J, et al. Study on the dynamic and thermal performances of a reversibly used cooling tower with upward spraying[J]. Energy, 2016, 96: 268-277. |
88 | Huang S, Lv Z, Liang C, et al. Experimental study of heat and mass transfer characteristics in a cross-flow heating tower[J]. International Journal of Refrigeration, 2017, 77: 116-127. |
89 | 黄世芳, 吕珍余, 梁彩华, 等. 横流热源塔传热传质系数实验研究[J]. 工程热物理学报, 2017, 38(5): 914-919. |
Huang S F, Lyu Z Y, Liang C H, et al. Experimental study of heat and mass transfer coefficients in a cross-flow heating tower[J]. Journal of Engineering Thermophysics, 2017, 38(5): 914-919. | |
90 | Huang S, Lv Z, Zhang X, et al. Experimental investigation on heat and mass transfer in heating tower solution regeneration using packing tower[J]. Energy and Buildings, 2018, 164: 77-86. |
91 | Lu J, Li W, Li Y, et al. Numerical study on heat and mass transfer characteristics of the counter-flow heat-source tower(CFHST) [J]. Energy and Buildings, 2017, 145: 318-330. |
92 | Huang Y, Ge F, Wang C, et al. Numerical study on the heat and mass transfer characteristics of the open-type cross-flow heat-source tower at low ambient temperature[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118756. |
93 | 文先太, 梁彩华, 刘成兴, 等. 叉流热源塔传热传质模型的建立及实验验证[J]. 化工学报, 2012, 63(8): 2398-2404. |
Wen X T, Liang C H, Liu C X, et al. Verification of model for heat and mass transfer process in cross flow heat-source tower[J]. CIESC Journal, 2012, 63(8): 2398-2404. | |
94 | 文先太, 梁彩华, 张小松, 等. 热源塔液气比优化分析与实验研究[J]. 东南大学学报(自然科学版), 2011, 41(4): 767-771. |
Wen X T, Liang C H, Zhang X S, et al. Experimental analysis of optimized liquid to gas ratio in heat-source tower[J]. Journal of Southeast University(Natural Science Edition), 2011, 41(4): 767-771. | |
95 | 李敏霞, 靳亚楠, 王磊. 热源塔热泵系统冷冻液的测试与选择[J]. 化学工程, 2017, 45(5): 46-50+78. |
Li M X, Jin Y N, Wang L. Testing and choosing of refrigerating fluids in heat pump system of heat-source tower[J]. Chemical Engineering(China), 2017, 45(5): 46-50+78. | |
96 | Li Y C, Chen G M,Tang L M, et al. Analysis on performance of a novel frost-free air-source heat pump system[J]. Building and Environment, 2011, 46(10): 2052-2059. |
97 | Liang C, Wen X, Liu C, et al. Performance analysis and experimental study of heat-source tower solution regeneration[J]. Energy Conversion and Management, 2014, 85: 596-602. |
98 | 李达, 梁彩华, 蒋东梅, 等. 热源塔热泵溶液低压沸腾再生装置性能研究[J]. 制冷技术, 2017, 37(2): 25-31. |
Li D, Liang C H, Jiang D M, et al. Research on performance of low pressure boiling solution regeneration device of heat-source tower heat pump[J]. Chinese Journal of Refrigeration Technology, 2017, 37(2): 25-31. | |
99 | 曹先齐, 文先太. 热源塔盐溶液冷冻再生特性研究[J]. 南京工程学院学报(自然科学版), 2019, 17(4): 74-79. |
Cao X Q, Wen X T. An experimental study on freezing regeneration characteristics of salt solution to heat-source tower[J]. Journal of Nanjing Institute of Technology(Natural Science Edition), 2019, 17(4): 74-79. | |
100 | 曹先齐, 文先太, 吴霜. 热源塔盐溶液冷冻再生试验研究[J]. 制冷与空调, 2019, 19(12): 61-65. |
Cao X Q, Wen X T, Wu S. Experimental study on freezing regeneration of salt solution in heat source tower[J]. Refrigeration and Air-conditioning, 2019, 19(12): 61-65. | |
101 | 文先太, 曹先齐, 余鹏飞, 等. 新型热源塔溶液再生系统性能优化分析与实验研究[J]. 化工学报, 2018, 69(5): 2226-2232. |
Wen X T, Cao X Q, Yu P F, et al. Energy-saving analysis and experimental study of a new heat-source tower solution regeneration system[J]. CIESC Journal, 2018, 69(5): 2226-2232. | |
102 | 文先太, 于娇, 曹先齐, 等. 新型热源塔溶液再生系统非稳态特性分析与实验研究[J]. 化工学报, 2019, 70(1): 83-90. |
Wen X T, Yu J, Cao X Q, et al. Experimental study of a novel solution regeneration system for heat-source tower under unsteady state[J]. CIESC Journal, 2019, 70(1): 83-90. | |
103 | 章文杰, 李念平, 王丽洁. 热源塔热泵系统相变潜热的应用研究[J]. 重庆大学学报, 2011, 34(S1): 58-61. |
Zhang W J, Li N P, Wang L J. Availability of latent heat by moist air condensation with the heat-source tower heat pump units[J]. Journal of Chongqing University, 2011, 34(S1): 58-61. | |
104 | Li N P, Zhang W J, Wang L J, et al. Experimental study on energy efficiency of heat-source tower heat pump units in winter condition[C]//Third International Conference on Measuring Technology and Mechatronics Automation. IEEE, 2011: 135-138. |
105 | Cheng J, Li N, Wang K. Study of heat-source-tower heat pump system efficiency[J]. Procedia Engineering, 2015, 121: 915-921. |
106 | Yang D, Qi H C. The application of energy tower heat pump technology in air conditioning engineering[C]//2016 International Conference on Sustainable Development. 2016. |
107 | Cheng J, Zou S, Chen S. Application research on the closed-loop heat-source-tower heat pump air conditioning system in hot-summer and cold-winter zone[J]. Procedia Engineering, 2015, 121: 922-929. |
108 | 陈琦, 李念平, 成剑林, 等. 闭式热源塔换热性能实验研究[J]. 暖通空调, 2015, 45(12): 68-71. |
Chen Q, Li N P, Cheng J L, et al. Experimental study on heat transfer performance of closed-type heat source towers[J]. Journal of HV&AC, 2015, 45(12): 68-71. | |
109 | 李腾波, 李念平, 张楠. 冬季喷淋工况下闭式热源塔换热性能实验[J]. 暖通空调, 2018, 48(8): 49-55. |
Li T B, Li N P, Zhang N. Experiments on heat transfer performances of closed heat tower under winter spray conditions[J]. Journal of HV&AC, 2018, 48(8): 49-55. | |
110 | 潘科, 周亚素, 王宇彤, 等. 上海冬季工况下闭式热源塔吸热能力模拟分析[J]. 建筑热能通风空调, 2016, 35(6): 14-17. |
Pan K, Zhou Y S, Wang Y T, et al. Simulation analysis of closed heat source tower under winter conditions in Shanghai[J]. Building Energy & Environment, 2016, 35(6): 14-17. | |
111 | 李峥嵘, 孙佳利, 张东凯. 结霜工况下闭式热源塔内翅片间距的模拟优化[J]. 建筑热能通风空调, 2017, 36(10): 1-4+18. |
Li Z R, Sun J L, Zhang D K. Simulation and optimization of fin pitch in closed heat source tower under frost condition[J]. Building Energy & Environment, 2017, 36(10): 1-4+18. | |
112 | Song P, Wang B, Li X, et al. Experimental research on heat and mass transfer characteristics of cross-flow closed-type heat-source tower[J]. Applied Thermal Engineering, 2018, 135: 289-303. |
113 | Song P, Li X, Wang B, et al. Experimental study on solution regeneration performance of closed-type heat-source tower[J]. Procedia Engineering, 2017, 205: 446-452. |
114 | 夏燚, 孙立镖, 梁彩华, 等. 具有预凝功能的新型热源塔的构建及模拟[J]. 东南大学学报(自然科学版), 2015, 45(6): 1108-1113. |
Xia Y, Sun L B, Liang C H, et al. Construction and simulation of new-type heat-source tower with pre-condensation function[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(6): 1108-1113. | |
115 | 夏燚, 孙立镖, 梁彩华, 等. 具有预凝功能的新型热源塔运行性能的实验研究[J]. 制冷学报, 2015, 36(6): 47-51+73. |
Xia Y, Sun L B, Liang C H, et al. Experimental study on the performance characteristic of a new-type heat-source tower with pre-condensation function[J]. Journal of Refrigeration, 2015, 36(6): 47-51+73. | |
116 | 张楠, 李念平, 崔海蛟, 等. 无填料热源塔吸热效率实验[J]. 化工学报, 2018, 69(5): 2007-2013. |
Zhang N, Li N P, Cui H J, et al. Experiment on heat absorption efficiency of non-packed heat source tower[J]. CIESC Journal, 2018, 69(5): 2007-2013. | |
117 | 乔春珍, 杨少鹏, 赵玉清. 冬季空气源热泵室外机喷淋湖水无霜运行能耗[J]. 煤气与热力, 2017, 37(10): 32-35. |
Qiao C Z, Yang S P, Zhao Y Q. Spraying lake water frost-free transformation of air-source heat pump outdoor machine in winter[J]. Gas & Heat, 2017, 37(10): 32-35. | |
118 | 许东晟, 闫凌, 姜益强, 等. 无霜空气源热泵系统喷淋溶液质量及浓度变化规律研究[J]. 发电与空调, 2014, (4): 24-30. |
Xu D S, Yan L, Jiang Y Q, et al. Study on change trend of spray solution quality and concentration for nonfrosting air source heat pump system[J]. Power Generation and Air Conditioning, 2014, (4): 24-30. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[4] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[5] | 邹启宏, 李乾, 葛天舒. 基于多目标下的两级并联除湿热泵系统实验研究[J]. 化工学报, 2023, 74(S1): 265-271. |
[6] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[7] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[10] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[11] | 雷博雯, 吴建华, 吴启航. R290低压比热泵高补气过热度循环研究[J]. 化工学报, 2023, 74(5): 1875-1883. |
[12] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
[13] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[14] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[15] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 498
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 740
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||