化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 1-7.DOI: 10.11949/0438-1157.20221644
高润淼1(), 宋孟杰1(
), 高恩元2, 张龙1, 张旋1, 邵苛苛1, 甄泽康1, 江正勇1
收稿日期:
2022-11-19
修回日期:
2022-12-26
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
宋孟杰
作者简介:
高润淼(1998—),男,博士研究生,runmiao.gao@bit.edu.cn
基金资助:
Runmiao GAO1(), Mengjie SONG1(
), Enyuan GAO2, Long ZHANG1, Xuan ZHANG1, Keke SHAO1, Zekang ZHEN1, Zhengyong JIANG1
Received:
2022-11-19
Revised:
2022-12-26
Online:
2023-06-05
Published:
2023-09-27
Contact:
Mengjie SONG
摘要:
为推进冷链装备的可持续发展与节能减排,针对冷链中的加工装备、运输装备、销售装备和冷冻冷藏装备等,结合制冷剂的充注量、泄漏率与回收率,对所用制冷剂的发展历程进行了综述,分析并总结了制冷剂替换方案对相关温室气体减排的影响。结果表明,自然制冷剂、HCs和HFOs在冷链装备中应用前景广阔,三类制冷剂替代方案的实施可分别取得5%、20%和10%左右的节能减排效果。在制冷剂充注、泄漏和回收等方面,既有研究还存在机理不明晰、效果待验证等多处研究空白,研发高效环保制冷剂并完善冷链装备制冷剂回收体系已成为目前重点研究方向。
中图分类号:
高润淼, 宋孟杰, 高恩元, 张龙, 张旋, 邵苛苛, 甄泽康, 江正勇. 冷链装备制冷剂相关温室气体减排研究进展[J]. 化工学报, 2023, 74(S1): 1-7.
Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain[J]. CIESC Journal, 2023, 74(S1): 1-7.
行业 | 传统制冷剂 | 替代制冷剂 | 发展建议 | ||
---|---|---|---|---|---|
HFOs | HCs | 自然制冷剂 | |||
冷加工装备 | R134a | R1234yf(17%) | R290/R1270/R600a(27.5%/26.3%/1.2%) | R744(3.9%) | HCs制冷剂 |
冷冻冷藏装备 | R404A | R448A(11%) | — | R717(—) | CO2制冷系统 |
冷藏运输装备 | R404A | R1234yf/R1234ze(—) | R290(16%) | R744(—) | 余热、余冷利用 |
冷藏销售装备 | R404A/R134a | — | R290/R600a(5%/20%) | R744(—) | CO2制冷系统 |
表1 冷链行业制冷剂替代研究结果与发展建议汇总
Table 1 Summary of research results and development suggestions on refrigerant substitution in cold chain industry
行业 | 传统制冷剂 | 替代制冷剂 | 发展建议 | ||
---|---|---|---|---|---|
HFOs | HCs | 自然制冷剂 | |||
冷加工装备 | R134a | R1234yf(17%) | R290/R1270/R600a(27.5%/26.3%/1.2%) | R744(3.9%) | HCs制冷剂 |
冷冻冷藏装备 | R404A | R448A(11%) | — | R717(—) | CO2制冷系统 |
冷藏运输装备 | R404A | R1234yf/R1234ze(—) | R290(16%) | R744(—) | 余热、余冷利用 |
冷藏销售装备 | R404A/R134a | — | R290/R600a(5%/20%) | R744(—) | CO2制冷系统 |
1 | Zhao H X, Liu S, Tian C Q, et al. An overview of current status of cold chain in China[J]. International Journal of Refrigeration, 2018, 88: 483-495. |
2 | 申江, 杨萌. 食品冷链的技术发展[J]. 包装工程, 2015, 36(15): 1-8, 72. |
Shen J, Yang M. Technological development of food cold chain[J]. Packaging Engineering, 2015, 36(15): 1-8, 72. | |
3 | Gao E Y, Cui Q, Jing H Q, et al. A review of application status and replacement progress of refrigerants in the Chinese cold chain industry[J]. International Journal of Refrigeration, 2021, 128: 104-117. |
4 | Guilpart J, 邵月月, 范薇, 等. 冷链技术简介——第Ⅳ部分 食品生产加工中的制冷[J]. 制冷技术, 2021, 41(4): 102-105. |
Guilpart J, Shao Y Y, Fan W, et al. Cold chain technology brief(Part Ⅳ): Refrigeration in food production and processing[J]. Chinese Journal of Refrigeration Technology, 2021, 41(4): 102-105. | |
5 | Koundinya S, Energy Seshadri S., exergy, environmental, and economic (4 E) analysis and selection of best refrigerant using TOPSIS method for industrial heat pumps[J]. Thermal Science and Engineering Progress, 2022, 36: 101491. |
6 | Halon T, Gil B, Zajaczkowski B. Comparative investigation of low-GWP binary and ternary blends as potential replacements of HFC refrigerants for air conditioning systems[J]. Applied Thermal Engineering, 2022, 210: 118354. |
7 | 宁静红, 刘圣春. R744直接接触冷凝制冷循环性能分析[J]. 化工学报, 2018, 69(5): 2049-2056. |
Ning J H, Liu S C. Performance analysis on R744 direct contact condensation refrigeration cycle[J]. CIESC Journal, 2018, 69(5): 2049-2056. | |
8 | Harby K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1247-1264. |
9 | Sun Y J, Wei Q M, Wang X D, et al. Absorption separation of hydrofluorocarbon/hydrofluoroolefin refrigerant mixtures using ionic liquids[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12787-12796. |
10 | Li J W, Yang Z, Duan Y Y. Experimental study on single bubble growth of R32+R1234yf binary mixtures during saturated pool boiling[J]. Applied Thermal Engineering, 2023, 219: 119535. |
11 | Li L C, Wei X L, Zhou S L, et al. One-pot cascade catalysis of dehydrochlorination of greenhouse gas HCFC-142b and hydrochlorination of acetylene for the spontaneous production of VDF and VCM[J]. ACS ES&T Engineering, 2022, 2(1): 121-128. |
12 | Apreaa C, Grecob A, Maiorinoa A. HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: energy analysis and environmental impact assessment[J]. Applied Thermal Engineering, 2018, 141: 226-233. |
13 | Yang J Y, Ye Z H, Yu B B, et al. Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for organic rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E)[J]. Energy, 2019, 173: 721-731. |
14 | Alba C G, Vega L F, Llovell F. A consistent thermodynamic molecular model of n-hydrofluoroolefins and blends for refrigeration applications[J]. International Journal of Refrigeration, 2020, 113: 145-155. |
15 | Gaurav R K. Computational energy and exergy analysis of R134a, R1234yf, R1234ze and their mixtures in vapour compression system[J]. Ain Shams Engineering Journal, 2018, 9: 3229-3237. |
16 | Zhai R, Yang Z, Zhuang Y, et al. Combustion characteristic of 2,3,3,3-tetrafluroropropene (R1234yf)[J]. International Journal of Refrigeration, 2022, 144: 65-75. |
17 | Zhang S J, Wang H X, Guo T. Evaluation of non-azeotropic mixtures containing HFOs as potential refrigerants in refrigeration and high-temperature heat pump systems[J]. Science China-Technological Sciences, 2010, 53(7): 1855-1861. |
18 | Sanchez D, Andreu-Nacher A, Calleja-Anta D, et al. Energy impact evaluation of different low-GWP alternatives to replace R134a in a beverage cooler. Experimental analysis and optimization for the pure refrigerants R152a, R1234yf, R290, R1270, R600a and R744[J]. Energy Conversion and Management, 2022, 256: 115388. |
19 | Gao E Y, Zhang Z B, Deng Q Q, et al. Techno-economic and environmental analysis of low-GWP alternative refrigerants in cold storage unit under year-round working conditions[J]. International Journal of Refrigeration, 2022, 134: 197-206. |
20 | Zhang L, Yang Z, Zhai R, et al. Flammable performance and experimental evaluation of a new blend as R404A lower-GWP alternative[J]. International Journal of Refrigeration, 2022, 135: 113-120. |
21 | Evans J, 邵月月, 范薇, 等. 冷链技术简介(Ⅰ): 冷藏库和冷冻库[J]. 制冷技术, 2021, 41(4): 88-93. |
Evans J, Shao Y Y, Fan W, et al. Cold chain technology brief(Ⅰ): Cold storage and refrigerated warehouse[J]. Chinese Journal of Refrigeration Technology, 2021, 41(4): 88-93. | |
22 | 任立乾, 黄志刚, 马海云. 低GWP制冷剂R448A和R449A在涡旋压缩机中的特性分析[J]. 制冷技术, 2019, 39(3): 42-45, 61. |
Ren L Q, Huang Z G, MA·h Y. Analysis on characteristics of low gwp refrigerants of R448A and R449A in scroll compressor[J]. Chinese Journal of Refrigeration Technology, 2019, 39(3): 42-45, 61. | |
23 | Deng Q Q, Zhang Z, Hu X. Thermoeconomic and environmental analysis of an inverter cold storage unit charged R448A[J]. Sustainable Energy Technologies and Assessments, 2021, 45: 101159. |
24 | Mota-Babiloni A, Navarro-Esbri J, Penis B, et al. Experimental evaluation of R448A as R404A lower-GWP alternative in refrigeration systems[J]. Energy Conversion and Management, 2015, 105: 756-762. |
25 | 唐俊杰, 柳琳, 李鹏, 等. 氨制冷剂应用与冷链可持续发展建议[J]. 冷藏技术, 2019, 42(2): 1-4. |
Tang J J, Liu L, Li P, et al. Application of ammonia refrigerant and sustainable development of cold chain[J]. Journal of Refrigeration Technology, 2019, 42(2): 1-4. | |
26 | 唐俊杰, 王昕, 张海南, 等. 氨系统循环倍率对换热影响的理论分析[J]. 制冷技术, 2014, 34(5): 31-33, 53. |
Tang J J, Wang X, Zhang H N, et al. Theoretical analysis of influence of circulating ratio on heat transfer in ammonia refrigeration system[J]. Chinese Journal of Refrigeration Technology, 2014, 34(5): 31-33, 53. | |
27 | 申江, 张于峰, 李林, 等. 氨制冷技术研究进展[J]. 化工学报, 2008, 59(S2): 29-36. |
Shen J, Zhang Y F, Li L, et al. Development of ammonia refrigerating technology[J]. CIESC Journal, 2008, 59(S2): 29-36. | |
28 | 李林, 王晓东. 氨制冷新技术及其进展[J]. 制冷, 2008, 27(4): 28-35. |
Li L, Wang X D. Development of ammonia refrigerating technology[J]. Refrigeration, 2008, 27(4): 28-35. | |
29 | Sun Z L, Wang Q F, Dai B M, et al. Options of low global warming potential refrigerant group for a three-stage cascade refrigeration system[J]. International Journal of Refrigeration, 2019, 100: 471-483. |
30 | Pearson A. Refrigeration with ammonia[J]. International Journal of Refrigeration, 2008, 31(4): 545-551. |
31 | 张泽凯, 邹同华. 氨制冷系统小型化存在问题与展望[J]. 冷藏技术, 2022, 45(1): 53-58. |
Zhang Z K, Zou T H. Problems and prospect of ammonia refrigeration system miniaturization[J]. Journal of Refrigeration Technology, 2022, 45(1): 53-58. | |
32 | Kai W, Eisele M, Hwang Y, et al. Review of secondary loop refrigeration systems[J]. International Journal of Refrigeration, 2010, 33(2): 212-234. |
33 | Wu J Z, Li Q T, Liu G H, et al. Evaluating the impact of refrigerated transport trucks in China on climate change from the life cycle perspective[J]. Environmental Impact Assessment Review, 2022, 97: 106866. |
34 | Li G. Comprehensive investigation of transport refrigeration life cycle climate performance[J]. Sustainable Energy Technologies and Assessments, 2017, 21: 33-49. |
35 | Wu X M, Hu S, Mo S J. Carbon footprint model for evaluating the global warming impact of food transport refrigeration systems[J]. Journal of Cleaner Production, 2013, 54: 115-124. |
36 | Lawton R, 邵月月, 范薇, 等. 冷链技术简介(Ⅱ): 冷藏运输[J]. 制冷技术, 2021, 41(4): 94-96. |
Lawton R, Shao Y Y, Fan W, et al. Cold chain technology brief(Ⅱ): Transport refrigeration[J]. Chinese Journal of Refrigeration Technology, 2021, 41(4): 94-96. | |
37 | Barta R B, Groll E A, Ziviani D. Review of stationary and transport CO2 refrigeration and air conditioning technologies[J]. Applied Thermal Engineering, 2021, 185: 116422. |
38 | Maiorino A, Petruzziello F, Aprea C. Refrigerated transport: state of the art, technical issues, innovations and challenges for sustainability[J]. Energies, 2021, 14: 7237. |
39 | Shi L, Tian H, Shu G. Multi-mode analysis of a CO2-based combined refrigeration and power cycle for engine waste heat recovery[J]. Applied Energy, 2020, 264: 114670. |
40 | Han X L, Li J B, Kong X Q, et al. Thermodynamic performance study on a novel absorption compression cascade refrigeration activated by an internal combustion engine[J]. International Journal of Energy Research, 2021, 45(6): 9595-9612. |
41 | Wajs J, Mrozek M, Fornalik-Wajs E, et al. Combined cold supply system for ship application based on low GWP refrigerants-thermo-economic and ecological analyses[J]. Energy Conversion and Management, 2022, 258: 115518. |
42 | Pigani L, Boscolo M, Pagan N. Marine refrigeration plants for passenger ships: low-GWP refrigerants and strategies to reduce environmental impact[J]. International Journal of Refrigeration, 2016, 64: 80-92. |
43 | Paride G, Armin H, Krzysztof B. Transcritical R744 refrigeration systems for supermarket applications: current status and future perspectives[J]. International Journal of Refrigeration, 2018, 93: 269-310. |
44 | Sun J, Im P, Bae Y, et al. Dataset of low global warming potential refrigerant refrigeration system for fault detection and diagnostics[J]. Scientific Data, 2021, 8(1): 144. |
45 | 滑雪, 王文华, 刘圣春, 等. 超市绿色制冷剂应用现状与实践[J]. 制冷与空调, 2019, 19(9): 59-64, 70. |
Hua X, Wang W H, Liu S C, et al. Application status and practice of green refrigerant in supermarket[J]. Refrigeration and Air-Conditioning, 2019, 19(9): 59-64, 70. | |
46 | Beshr M, Aute V, Sharma V, et al. A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants[J]. International Journal of Refrigeration, 2015, 56: 154-164. |
47 | Sogut M Z, Yalcin E, Karakoc H. Refrigeration inventory based on CO2 emissions and exergetic performance for supermarket applications[J]. Energy and Buildings, 2012, 51: 84-92. |
48 | Hafner A, Foersterling S, Banasiak K. Multi-ejector concept for R-744 supermarket refrigeration[J]. International Journal of Refrigeration, 2014, 43: 1-13. |
49 | 陈威, 于梅红, 赵红霞. 优化控制R744多喷射器双温超市制冷系统[J]. 化工学报, 2020, 71(7): 3266-3277. |
Chen W, Yu M H, Zhao H X. Control optimization of R744 duo-temperature supermarket refrigeration system with multi-ejector[J]. CIESC Journal, 2020, 71(7): 3266-3277. | |
50 | 林励冠, 代彦军, Hafner A. 两级R744超市中央制冷系统节能特性[J]. 化工学报, 2018, 69(S2): 394-401. |
Lin L G, Dai Y J, Hafner A. Performance of R744 commercial centralized refrigeration systems[J]. CIESC Journal, 2018, 69(S2): 394-401. | |
51 | Sun Z L, Li J M, Liang Y C, et al. Performance assessment of CO2 supermarket refrigeration system in different climate zones of China[J]. Energy Conversion and Management, 2020, 208: 112572. |
52 | Cui Q, Gao E Y, Zhang Z Y, et al. Preliminary study on the feasibility assessment of CO2 booster refrigeration systems for supermarket application in China: an energetic, economic, and environmental analysis[J]. Energy Conversion and Management, 2021, 225: 113422. |
53 | 代宝民, 刘圣春, 曹钰, 等. 商超自然工质CO2制冷系统增效技术及碳减排预测[J]. 华电技术, 2021, 43(11): 74-84. |
Dai B M, Liu S C, Cao Y, et al. Efficiency enhancement technology and carbon emission prediction of refrigeration system taking CO2 natural refrigerant in supermarkets [J]. Huadian Technology, 2021, 43(11): 74-84. | |
54 | Li Z H, Jiang H Y, Chen X W, et al. Optimal refrigerant charge and energy efficiency of an oil-free refrigeration system using R134a[J]. Applied Thermal Engineering, 2020, 164: 114473. |
55 | Lin L N, Kedzierski M A. Review of low-GWP refrigerant pool boiling heat transfer on enhanced surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 131: 1279-1303. |
56 | Makhnatch P, Mota-Babiloni A, Rogstam J, et al. Retrofit of lower GWP alternative R449A into an existing R404A indirect supermarket refrigeration system[J]. International Journal of Refrigeration, 2017, 76: 184-192. |
57 | Llopis R, Calleja-Anta D, Sanchez D, et al. R-454C, R-459B, R-457A and R-455A as low-GWP replacements of R-404A: experimental evaluation and optimization[J]. International Journal of Refrigeration, 2019, 106: 133-143. |
58 | Llopis, R, Calleja-Anta D, Maiorino A, et al. TEWI analysis of a stand-alone refrigeration system using low-GWP fluids with leakage ratio consideration[J]. International Journal of Refrigeration, 2020, 118: 279-289. |
59 | Poggi F, Macchi-Tejeda H, Leducq D, et al. Refrigerant charge in refrigerating systems and strategies of charge reduction[J]. International Journal of Refrigeration, 2008, 31(3): 353-370. |
60 | 元爱民. R22制冷系统改造成R22/CO2载冷系统的可行性分析[J]. 制冷与空调, 2020, 20(4): 59-63. |
Yuan A M. Feasibility analysis of R22 refrigeration system reconstructed to R22/CO2 secondary refrigeration system[J]. Refrigeration and Air-Conditioning, 2020, 20(4): 59-63. | |
61 | Zhang S Z, Chen G M, Li Z T, et al. Computational fluid dynamics analysis of flammable refrigerant leakage through a microcrack[J]. International Journal of Refrigeration, 2022, 134: 35-44. |
62 | Fang X, Lin J, Ma X M. Simulation study on compression characteristics of low GWP refrigerants in the cylinder of rotary compressors[J]. Applied Thermal Engineering, 2021, 193: 117056. |
63 | Hart M, Austin W, Acha S, et al. A roadmap investment strategy to reduce carbon intensive refrigerants in the food retail industry[J]. Journal of Cleaner Production, 2020, 275: 123039. |
64 | 司春强, 唐俊杰, 马进, 等. 我国氨系统冷库安全现状及发展建议[J]. 制冷技术, 2014, 34(3): 15-17. |
Si C Q, Tang J J, Ma J, et al. Security situation and development recommendations of cold storage with ammonia system in China[J]. Chinese Journal of Refrigeration Technology, 2014, 34(3): 15-17. | |
65 | Li K, Wang J W, Luo S X, et al. Experimental investigation on combustion characteristics of flammable refrigerant R290/R1234yf leakage from heat pump system for electric vehicles[J]. 2020, 7(4): 191478. |
66 | Tang W E, He G G, Sun W, et al. Assessment of leakage and risk reduction of R290 in a split type household air conditioner[J]. International Journal of Refrigeration, 2018, 89: 70-82. |
67 | 刘英志, 刘业凤, 卞伟, 等. R290制冷剂在商用冷柜上的应用研究[J]. 制冷技术, 2012, 32(1): 58-60. |
Liu Y Z, Liu Y F, Bian W, et al. Refrigerant performance study on R290 used in commercial refrigerators[J]. Chinese Journal of Refrigeration Technology, 2012, 32(1): 58-60. | |
68 | Wang H Y, Wang Y, Mi H, et al. Analysis of carbon emission energy inventory from refrigerant production and recycling carbon compensation[J]. Applied Sciences-Basel, 2022, 12: 1. |
69 | Uwitonze H, Chaniago Y D, Lim H. Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant[J]. Energy, 2022, 254: 124373. |
70 | 吴泽球. 制冷剂回收及研究的现状和建议[J]. 环境与可持续发展, 2008(5): 37-39. |
Wu Z Q. Present situation and suggestions of refrigerant recovery and research[J]. Environment and Sustainable Development, 2008(5): 37-39. | |
71 | 张贺然, 于可利, 邱金凤, 等. 美国、欧盟、日本的制冷剂回收处置现状[J]. 资源再生, 2018, 11: 48-51. |
Zhang H R, Yu K L, Qiu J F, et al. Current status of refrigerant recovery and disposal in the United States, the European Union, and Japan[J]. Resource Recycling, 2018, 11: 48-51. | |
72 | 骆理学. 制冷剂回收与循环利用技术[J]. 制冷与空调, 2014, 14(6): 48-50, 68. |
Luo X L. Refrigerant's recovery and recycling technology[J]. Refrigeration and Air-Conditioning, 2014, 14(6): 48-50, 68. |
[1] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[2] | 周培旭, 李亚伦, 叶恭然, 庄园, 吴曦蕾, 郭智恺, 韩晓红. 有限空间内工质物性对制冷剂泄漏扩散特性的影响[J]. 化工学报, 2023, 74(2): 953-967. |
[3] | 孙裕坤, 杨焘, 吴江涛. R32+R1234yf+R1234ze(E)混合制冷剂气液相平衡实验研究[J]. 化工学报, 2022, 73(3): 1063-1071. |
[4] | 薛涵文, 聂峰, 赵延兴, 董学强, 郭浩, 沈俊, 公茂琼. 基于流型的R290水平管内流动沸腾压降实验研究[J]. 化工学报, 2022, 73(11): 4903-4916. |
[5] | 戴晓业, 安青松, 许云婷, 史琳. 废弃制冷剂降解方法研究现状及思考[J]. 化工学报, 2021, 72(S1): 1-6. |
[6] | 许晨怡, 叶恭然, 郭豪文, 庄园, 郭智恺, 韩晓红, 陈光明. 制冷剂R1336mzz(E)液相黏度理论与实验研究[J]. 化工学报, 2021, 72(6): 3261-3269. |
[7] | 陈裕博, 杨昭, 武晓昆, 吕子建, 张勇. R513A的饱和液相黏度特性研究[J]. 化工学报, 2021, 72(11): 5502-5509. |
[8] | 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89. |
[9] | 邱琳祯, 谷波, 缪梦华. R32热力学性质计算模型及其分析[J]. 化工学报, 2019, 70(6): 2075-2082. |
[10] | 吴迪, 胡斌, 王如竹, 江南山, 李子亮, 余京京. 采用自然工质水的高温热泵系统性能分析[J]. 化工学报, 2018, 69(S2): 95-100. |
[11] | 史晓斐, 杨思宇, 钱宇. 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69(12): 4931-4946. |
[12] | 陈斌, 周致富, 辛慧. 制冷剂瞬态闪蒸喷雾冷却研究进展[J]. 化工学报, 2018, 69(1): 57-68. |
[13] | 吴迪, 胡斌, 王如竹, 江南山, 李子亮. 水制冷剂及水蒸气压缩机研究现状和展望[J]. 化工学报, 2017, 68(8): 2959-2968. |
[14] | 贾荣, 林文胜. 混合制冷剂中重烃对天然气液化流程的影响[J]. 化工学报, 2015, 66(S2): 379-386. |
[15] | 王海蓉, 梁栋, 黄模志. 生物质型CCHP系统的联合循环仿真及性能分析[J]. 化工学报, 2015, 66(S2): 279-286. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||