化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4730-4738.DOI: 10.11949/0438-1157.20230621
张丽1,2,3(), 石文荣1,2,3, 梁琦1,2,3, 刘阳1,2,3, 夏中峰1,2,3, 郭振1,2,3()
收稿日期:
2023-06-25
修回日期:
2023-11-03
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
郭振
作者简介:
张丽(1992—),女,硕士,工程师,zhang_li@qibebt.ac.cn
Li ZHANG1,2,3(), Wenrong SHI1,2,3, Qi LIANG1,2,3, Yang LIU1,2,3, Zhongfeng XIA1,2,3, Zhen GUO1,2,3()
Received:
2023-06-25
Revised:
2023-11-03
Online:
2023-11-25
Published:
2024-01-22
Contact:
Zhen GUO
摘要:
空冷型质子交换膜燃料电池(PEMFC)具有自增湿、质量轻、系统操作简单等特点,适合应用于无人机等领域。氢气进气压力是影响空冷型PEMFC电堆性能的一个重要因素。以1 kW阴极开放式空冷型PEMFC电堆为研究对象,对比了不同氢气进气压力对单片电池电压及其一致性、电堆输出电压、输出功率以及氢气利用率的影响。研究结果表明,氢气进气压力越高,单片电池电压、电堆输出电压和功率越高,大电流下单片电池电压的一致性越好;此外,本实验利用排水法收集阳极尾气并计算氢气利用率,氢气进气压力越高,系统氢气利用率越低。
中图分类号:
张丽, 石文荣, 梁琦, 刘阳, 夏中峰, 郭振. 氢气进气压力对空冷PEMFC性能的影响[J]. 化工学报, 2023, 74(11): 4730-4738.
Li ZHANG, Wenrong SHI, Qi LIANG, Yang LIU, Zhongfeng XIA, Zhen GUO. Effects of hydrogen intake pressure on performance of air-cooled PEMFC[J]. CIESC Journal, 2023, 74(11): 4730-4738.
参数 | 数值 |
---|---|
氢气 | >99.99%;高压储氢瓶经减压阀供应 |
进气压力 | 0.05~0.08 MPa |
输出电流 | 0~42 A |
输出电压 | 不小于24 V |
电堆温度 | <65℃ |
表1 操作参数设置
Table 1 Operation parameter settings
参数 | 数值 |
---|---|
氢气 | >99.99%;高压储氢瓶经减压阀供应 |
进气压力 | 0.05~0.08 MPa |
输出电流 | 0~42 A |
输出电压 | 不小于24 V |
电堆温度 | <65℃ |
电流/A | 温度/℃ | 排气时长/s | 排气间隔/s |
---|---|---|---|
5 | 42 | 0.1 | 10 |
10 | 43 | 0.1 | |
15 | 44 | 0.1 | |
20 | 45 | 0.1 | |
25 | 50 | 0.3 | |
30 | 53 | 0.4 | |
35 | 56 | 0.4 |
表2 燃料电池的排气时间和排气频率
Table 2 Exhaust time and exhaust frequency of fuel cells
电流/A | 温度/℃ | 排气时长/s | 排气间隔/s |
---|---|---|---|
5 | 42 | 0.1 | 10 |
10 | 43 | 0.1 | |
15 | 44 | 0.1 | |
20 | 45 | 0.1 | |
25 | 50 | 0.3 | |
30 | 53 | 0.4 | |
35 | 56 | 0.4 |
电流/A | 氢气进口压力/MPa | 平均单电池电压μ/V | σ/V |
---|---|---|---|
10 | 0.05 | 0.665 | 0.0027 |
0.08 | 0.717 | 0.0048 | |
15 | 0.05 | 0.643 | 0.0033 |
0.08 | 0.670 | 0.0083 | |
20 | 0.05 | 0.620 | 0.0081 |
0.08 | 0.631 | 0.0143 | |
25 | 0.05 | 0.609 | 0.0101 |
0.08 | 0.619 | 0.0077 | |
30 | 0.05 | 0.586 | 0.0092 |
0.08 | 0.598 | 0.0085 | |
35 | 0.05 | 0.565 | 0.0112 |
0.08 | 0.574 | 0.0091 |
表3 不同氢气进气压力下单片电池电压的σ值
Table 3 The σ value of single cell voltage with different hydrogen intake pressure
电流/A | 氢气进口压力/MPa | 平均单电池电压μ/V | σ/V |
---|---|---|---|
10 | 0.05 | 0.665 | 0.0027 |
0.08 | 0.717 | 0.0048 | |
15 | 0.05 | 0.643 | 0.0033 |
0.08 | 0.670 | 0.0083 | |
20 | 0.05 | 0.620 | 0.0081 |
0.08 | 0.631 | 0.0143 | |
25 | 0.05 | 0.609 | 0.0101 |
0.08 | 0.619 | 0.0077 | |
30 | 0.05 | 0.586 | 0.0092 |
0.08 | 0.598 | 0.0085 | |
35 | 0.05 | 0.565 | 0.0112 |
0.08 | 0.574 | 0.0091 |
电流/A | 氢气进气压力/MPa | 排气间隔/s | 排气时间/s | 排气次数/s | 氢气平均体积V/(L/min) | 尾气排放的氢气质量 |
---|---|---|---|---|---|---|
25 | 0.05 | 10 | 0.03 | 10 | 0.514 | 0.042 |
0.08 | 0.03 | 10 | 0.743 | 0.061 | ||
30 | 0.05 | 0.04 | 10 | 0.684 | 0.056 | |
0.08 | 0.04 | 5 | 0.985 | 0.081 | ||
35 | 0.05 | 0.04 | 5 | 0.795 | 0.066 | |
0.08 | 0.04 | 5 | 1.289 | 0.106 |
表4 空冷PEMFC排水法测量阳极尾气排放量
Table 4 Measurement of anode tail gas emission of air-cooled PEMFC by drainage method
电流/A | 氢气进气压力/MPa | 排气间隔/s | 排气时间/s | 排气次数/s | 氢气平均体积V/(L/min) | 尾气排放的氢气质量 |
---|---|---|---|---|---|---|
25 | 0.05 | 10 | 0.03 | 10 | 0.514 | 0.042 |
0.08 | 0.03 | 10 | 0.743 | 0.061 | ||
30 | 0.05 | 0.04 | 10 | 0.684 | 0.056 | |
0.08 | 0.04 | 5 | 0.985 | 0.081 | ||
35 | 0.05 | 0.04 | 5 | 0.795 | 0.066 | |
0.08 | 0.04 | 5 | 1.289 | 0.106 |
电流/A | 入口氢气压力/MPa | 实际利用的氢气量 | 尾气排放的氢气质量 | 氢气利用率/% |
---|---|---|---|---|
25 | 0.05 | 0.725 | 0.042 | 94.52 |
0.08 | 0.061 | 92.24 | ||
30 | 0.05 | 0.902 | 0.056 | 94.15 |
0.08 | 0.081 | 91.76 | ||
35 | 0.05 | 1.053 | 0.066 | 94.10 |
0.08 | 0.106 | 90.85 |
表5 空冷PEMFC氢气利用率
Table 5 Hydrogen utilization rate of air-cooled PEMFC
电流/A | 入口氢气压力/MPa | 实际利用的氢气量 | 尾气排放的氢气质量 | 氢气利用率/% |
---|---|---|---|---|
25 | 0.05 | 0.725 | 0.042 | 94.52 |
0.08 | 0.061 | 92.24 | ||
30 | 0.05 | 0.902 | 0.056 | 94.15 |
0.08 | 0.081 | 91.76 | ||
35 | 0.05 | 1.053 | 0.066 | 94.10 |
0.08 | 0.106 | 90.85 |
1 | 张文静, 李静, 魏子栋. 燃料电池空气电极的孔道结构调控[J]. 化工学报, 2020, 71(10): 4553-4574. |
Zhang W J, Li J, Wei Z D. Strategies for tuning porous structures of air electrode in fuel cells[J]. CIESC Journal, 2020, 71(10): 4553-4574. | |
2 | 宇高义郎, 许竞莹, 王国卓, 等. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282. |
Utaka Y, Xu J Y, Wang G Z, et al. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells[J]. CIESC Journal, 2021, 72(4): 2276-2282. | |
3 | Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007. |
4 | Song K, Fan Z X, Hu X, et al. Effect of adding vortex promoter on the performance improvement of active air-cooled proton exchange membrane fuel cells[J]. Energy, 2021, 223: 120104. |
5 | Bai X Y, Luo L Z, Huang B, et al. Performance improvement of proton exchange membrane fuel cell stack by dual-path hydrogen supply[J]. Energy, 2022, 246: 123297. |
6 | 谭凯峰, 陈维荣, 韩明, 等. 空冷型PEMFC电堆的单电池特性研究[J]. 电化学, 2018, 24(6): 766-771. |
Tan K F, Chen W R, Han M, et al. Voltage distribution of self-humidifying air-cooled PEMFC[J]. Journal of Electrochemistry, 2018, 24(6): 766-771. | |
7 | Pløger L J, Fallah R, Shakhshir S A, et al. Improving the performance of an air-cooled fuel cell stack by a turbulence inducing grid[J]. ECS Transactions, 2018, 86(13): 77-87. |
8 | De las Heras A, Vivas F J, Segura F, et al. Air-cooled fuel cells: keys to design and build the oxidant/cooling system[J]. Renewable Energy, 2018, 125: 1-20. |
9 | Li Q, Chen W R, Liu Z X, et al. Net power control based on linear matrix inequality for proton exchange membrane fuel cell system[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 1-8. |
10 | Boukoberine M N, Zhou Z B, Benbouzid M. A critical review on unmanned aerial vehicles power supply and energy management: solutions, strategies, and prospects[J]. Applied Energy, 2019, 255: 113823. |
11 | Lee J, Gundu M H, Lee N, et al. Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11704-11713. |
12 | 张晓辉, 刘莉, 戴月领. 燃料电池无人机能源管理与飞行状态耦合[J]. 航空学报, 2019, 40(7): 222793. |
Zhang X H, Liu L, Dai Y L. Coupling effect of energy management and flight state for fuel cell powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 222793. | |
13 | Fernández-Moreno J, Guelbenzu G, Martín A J, et al. A portable system powered with hydrogen and one single air-breathing PEM fuel cell[J]. Applied Energy, 2013, 109: 60-66. |
14 | Sohn Y J, Park G G, Yang T H, et al. Operating characteristics of an air-cooling PEMFC for portable applications[J]. Journal of Power Sources, 2005, 145(2): 604-609. |
15 | Wu J F, Galli S, Lagana I, et al. An air-cooled proton exchange membrane fuel cell with combined oxidant and coolant flow[J]. Journal of Power Sources, 2009, 188(1): 199-204. |
16 | 张敬, 龙博林, 王辉, 等. 空冷型PEMFC电堆输出特性研究[J]. 湖南理工学院学报(自然科学版), 2021, 34(2): 15-19. |
Zhang J, Long B L, Wang H, et al. Output characteristics of air-cooled PEMFC stack[J]. Journal of Hunan Institute of Science and Technology (Natural Sciences), 2021, 34(2): 15-19. | |
17 | 魏琳, 郭剑, 廖梓豪, 等. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231. |
Wei L, Guo J, Liao Z H, et al. Influence of air flow rate on the performance of air cooled hydrogen fuel cell stack[J]. CIESC Journal, 2022, 73(7): 3222-3231. | |
18 | 彭明, 夏强峰, 蒋理想, 等. 流道布置对风冷燃料电池性能影响的研究[J]. 化工学报, 2022, 73(10): 4625-4637. |
Peng M, Xia Q F, Jiang L X, et al. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells[J]. CIESC Journal, 2022, 73(10): 4625-4637. | |
19 | 叶可, 颜永文, 李君, 等. 基于不同流道的PEMFC传质与水热平衡数值模拟[J]. 太阳能学报, 2021, 42(10): 349-354. |
Ye K, Yan Y W, Li J, et al. Numerical simulation of mass transfer and hydrothermal balance in PEMFC based on different flow channels[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 349-354. | |
20 | Matian M, Marquis A, Brandon N. Model based design and test of cooling plates for an air-cooled polymer electrolyte fuel cell stack[J]. International Journal of Hydrogen Energy, 2011, 36(10): 6051-6066. |
21 | Qiu D K, Peng L F, Tang J Y, et al. Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels[J]. Energy, 2020, 198: 117334. |
22 | 陈冬浩, 卜庆元, 陈维荣, 等. 空冷型PEMFC阳极排气周期实验研究[J]. 电池, 2015, 45(1): 3-5. |
Chen D H, Bu Q Y, Chen W R, et al. An experimental study on anode exhaust cycle of air-cooled PEMFC[J]. Battery Bimonthly, 2015, 45(1): 3-5. | |
23 | 朱晓舟, 陈民武, 刘湘东, 等. 空冷型PEMFC阳极排气方法实验研究[J]. 储能科学与技术, 2018, 7(1): 118-122. |
Zhu X Z, Chen M W, Liu X D, et al. Experimental study on anode exhaust methods of air-cooled PEMFC[J]. Energy Storage Science and Technology, 2018, 7(1): 118-122. | |
24 | 纪少波, 马荣泽, 赵同军, 等. 质子交换膜燃料电池运行参数影响规律研究[J]. 汽车安全与节能学报, 2021, 12(2): 251-256. |
Ji S B, Ma R Z, Zhao T J, et al. Study on the influence of operation parameters on the performance of proton exchange membrane fuel cell system[J]. Journal of Automotive Safety and Energy, 2021, 12(2): 251-256. | |
25 | 卫超强. 不同参数对质子交换膜燃料电池输出特性的影响[D]. 太原: 太原理工大学, 2021. |
Wei C Q. Effects of different parameters on the output characteristics of proton exchange membrane fuel cells[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
26 | 李一鸣, 戴海峰, 袁浩. 进气条件对PEMFC动态响应的影响[J]. 电池, 2021, 51(2): 122-125. |
Li Y M, Dai H F, Yuan H. Influence of intake condition on dynamic response of PEMFC[J]. Battery Bimonthly, 2021, 51(2): 122-125. | |
27 | 刘洪建. PEMFC水热管理及性能优化研究[D]. 济南: 山东大学, 2020. |
Liu H J. Research on PEMFC water-heat management and performance optimization [D]. Jinan: Shandong University, 2020. | |
28 | 胡可, 马天才. 不同工作条件下燃料电池输出特性的数值分析[J]. 佳木斯大学学报(自然科学版), 2017, 35(6): 1019-1023. |
Hu K, Ma T C. Numerical simulation of PEMFC output performance under different operating conditions[J]. Journal of Jiamusi University (Natural Science Edition), 2017, 35(6): 1019-1023. | |
29 | 万忠民, 全文祥, 阎瀚章, 等. 无人机用燃料电池系统性能分析[J]. 化工学报, 2019, 70(S2): 329-335. |
Wan Z M, Quan W X, Yan H Z, et al. Performance analysis of fuel cell system for unmanned aerial vehicle [J]. CIESC Journal, 2019, 70(S2): 329-335. | |
30 | 胡泽宇. 风冷质子交换膜燃料电池性能研究[D]. 武汉: 武汉轻工大学, 2021. |
Hu Z Y. Study on the performance of air-cooled proton exchange membrane fuel cell[D]. Wuhan: Wuhan Polytechnic University, 2021. | |
31 | 赵英昊. 空冷型燃料电池的阳极动态供氢策略研究[D]. 成都: 电子科技大学, 2021. |
Zhao Y H. Research on dynamic hydrogen supply strategy for anode of air-cooled proton exchange membrane fuel cell [D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
32 | 陈敏学, 邱殿凯, 彭林法. 基于反应状态原位测试的空冷型燃料电池运行参数分析[J]. 上海交通大学学报, DOI: 10.16183/j.cnki.jsjtu. 2022, 318. |
Chen M X, Qiu D K, Peng L F. Operation parameter of air-cooled PEMFC based on reaction state in-situ test[J]. Journal of Shanghai Jiaotong University, DOI: 10.16183/j.cnki.jsjtu.2022, 318. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[3] | 纪燕男, 孙培茁, 马强, 张玮琦, 苏华能, 徐谦. 锑离子添加剂对低共熔溶剂(DES)电解液液流电池的性能改善研究[J]. 化工学报, 2021, 72(6): 3368-3379. |
[4] | 叶丁丁,李 俊,朱 恂,廖 强,黄桂兰,付 乾. 自呼吸式直接甲醇燃料电池性能及其传质特性 [J]. CIESC Journal, 2009, 28(6): 948-. |
[5] | 涂海涛, 孙文策, 解茂昭, 阿布里提. 质子交换膜燃料电池双层扩散层特性三维分析 [J]. 化工学报, 2008, 59(1): 182-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||