化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4156-4162.DOI: 10.11949/0438-1157.20220419
收稿日期:
2022-03-25
修回日期:
2022-07-23
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
朱恂
作者简介:
张童(1992—),男,博士研究生,673153675@qq.com
基金资助:
Tong ZHANG(), Yang YANG, Dingding YE, Rong CHEN, Xun ZHU(), Qiang LIAO
Received:
2022-03-25
Revised:
2022-07-23
Online:
2022-09-05
Published:
2022-10-09
Contact:
Xun ZHU
摘要:
微流体燃料电池是一种新型微型电源装置。酸性体系下电池运行时产生的CO2气泡会严重影响电池性能以及稳定性。研究电池运行过程中气泡动态行为对削弱气泡影响具有重要意义。本文构建具有可渗透阳极的自呼吸微流体燃料电池,实验研究了阳极催化剂分布对电池性能以及CO2动态行为的影响。结果表明:催化剂分布在阳极两侧时电池性能最好,但电池波动性大。仅在一侧分布催化剂时,电池运行稳定,气泡主要在电解液流道形成。
中图分类号:
张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162.
Tong ZHANG, Yang YANG, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. Effect of catalyst distribution on the performance characteristics of microfluidic fuel cell with flow-through anode[J]. CIESC Journal, 2022, 73(9): 4156-4162.
图1 可渗透阳极微流体燃料电池爆炸视图(a)以及不同阳极催化剂分布电池结构示意图(b)
Fig.1 Explosive view of the air-breathing microfluidic fuel cell with flow-through anode (a) and schematic illustration of cells with different catalyst distributions (b)
仪器名称 | 精度特性 |
---|---|
电化学工作站 | 电池电压准确度为±0.05% |
电池电流准确度为±0.05% | |
Harvard注射泵 | 流量精度为±0.25% |
数据采集仪 | 电压准确度为±0.64% |
游标卡尺 | 最小刻度0.02 mm |
分析天平 | 精度±0.01 mg |
表1 测量仪器精度
Table 1 The accuracy of measuring instrument
仪器名称 | 精度特性 |
---|---|
电化学工作站 | 电池电压准确度为±0.05% |
电池电流准确度为±0.05% | |
Harvard注射泵 | 流量精度为±0.25% |
数据采集仪 | 电压准确度为±0.64% |
游标卡尺 | 最小刻度0.02 mm |
分析天平 | 精度±0.01 mg |
测量参数 | 误差 |
---|---|
电极有效面积 | ±0.2% |
电池电流 | ±0.05% |
电极电势 | ±0.05% |
反应物流量 | ±0.25% |
电极尺寸 | ±0.67% |
表2 误差分析结果
Table 2 Results of uncertainty analysis
测量参数 | 误差 |
---|---|
电极有效面积 | ±0.2% |
电池电流 | ±0.05% |
电极电势 | ±0.05% |
反应物流量 | ±0.25% |
电极尺寸 | ±0.67% |
1 | Martins C A, Ibrahim O A, Pei P, et al. “Bleaching” glycerol in a microfluidic fuel cell to produce high power density at minimal cost[J]. Chemical Communications, 2018, 54(2): 192-195. |
2 | Panjiara D, Pramanik H. Study on the effect of calcium hypochlorite and air as mixed oxidant and a synthesized low cost Pd-Ni/C anode electrocatalyst for electrooxidation of glycerol in an air breathing microfluidic fuel cell[J]. The Canadian Journal of Chemical Engineering, 2021, 100: S94-S111. |
3 | Ortiz-Ortega E, Goulet M A, Lee J W, et al. A nanofluidic direct formic acid fuel cell with a combined flow-through and air-breathing electrode for high performance[J]. Lab on a Chip, 2014, 14(24): 4596-4598. |
4 | Lee S H, Ahn Y. A laminar flow-based single stack of flow-over planar microfluidic fuel cells[J]. Journal of Power Sources, 2017, 351: 67-73. |
5 | Wang Y F, Leung D Y C. A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel[J]. Applied Energy, 2016, 184: 659-669. |
6 | Wang Y F, Leung D Y C. A high-performance aluminum-feed microfluidic fuel cell stack[J]. Journal of Power Sources, 2016, 336: 427-436. |
7 | Guima K E, Coelho P H L, Trindade M A G, et al. 3D-printed glycerol microfluidic fuel cell[J]. Lab on a Chip, 2020, 20(12): 2057-2061. |
8 | Yan X H, Xu A, Zeng L, et al. A paper-based microfluidic fuel cell with hydrogen peroxide as fuel and oxidant[J]. Energy Technology, 2018, 6(1): 140-143. |
9 | Moore S, Sinton D, Erickson D. A plate-frame flow-through microfluidic fuel cell stack[J]. Journal of Power Sources, 2011, 196(22): 9481-9487. |
10 | Chen J X, Xu P H, Lu J, et al. A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model[J]. Energy, 2021, 218: 119543. |
11 | Zhou Y, Yang Y, Zhu X, et al. Bubble-trap layer for effective removing gas bubbles and stabilizing power generation in direct liquid fuel cell[J]. Journal of Power Sources, 2021, 507: 230260. |
12 | Zhang T, Zhu X, Ye D D, et al. Accelerated bubble growth and departure by bioinspired gradient anode in microfluidic fuel cells[J]. Electrochimica Acta, 2022, 424: 140618. |
13 | Zhu X, Zhang B, Ye D D, et al. Air-breathing direct formic acid microfluidic fuel cell with an array of cylinder anodes[J]. Journal of Power Sources, 2014, 247: 346-353. |
14 | Deng B W, Ye D D, Zhang B, et al. Current density distribution in air-breathing microfluidic fuel cells with an array of graphite rod anodes[J]. International Journal of Hydrogen Energy, 2021, 46(3): 2960-2968. |
15 | Shuyu J C. A visual study of bubble formation in microfluidic fuel cells[J]. Fuel Cells, 2013, 13(6): 1226-1233. |
16 | Yoon S K, Fichtl G W, Kenis P J A. Active control of the depletion boundary layers in microfluidic electrochemical reactors[J]. Lab on a Chip, 2006, 6(12): 1516-1524. |
17 | Meng D D, Kim C J. An active micro-direct methanol fuel cell with self-circulation of fuel and built-in removal of CO2 bubbles[J]. Journal of Power Sources, 2009, 194(1): 445-450. |
18 | Liang J S, Luo Y, Zheng S, et al. Enhance performance of micro direct methanol fuel cell by in situ CO2 removal using novel anode flow field with superhydrophobic degassing channels[J]. Journal of Power Sources, 2017, 351: 86-95. |
19 | Zhang H, Xuan J, Leung D Y C, et al. Advanced gas-emission anode design for microfluidic fuel cell eliminating bubble accumulation[J]. Journal of Micromechanics and Microengineering, 2017, 27(10): 105016. |
20 | Paust N, Litterst C, Metz T, et al. Capillary-driven pumping for passive degassing and fuel supply in direct methanol fuel cells[J]. Microfluidics and Nanofluidics, 2009, 7(4): 531-543. |
21 | Sun L J, Liu C, Liang J S, et al. A self-pumping and self-breathing micro direct methanol fuel cell with polymer bipolar plates[J]. Journal of Power Sources, 2011, 196(18): 7533-7540. |
22 | Kjeang E, Brolo A G, Harrington D A, et al. Hydrogen peroxide as an oxidant for microfluidic fuel cells[J]. Journal of the Electrochemical Society, 2007, 154(12): B1220-B1226. |
23 | Lan Q, Ye D D, Zhu X, et al. Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel[J]. Energy, 2022, 239: 122098. |
24 | Kjeang E, Michel R, Harrington D A, et al. A microfluidic fuel cell with flow-through porous electrodes[J]. Journal of the American Chemical Society, 2008, 130(12): 4000-4006. |
25 | Wang H N, Zhu X, Zhang B, et al. Two-phase computational modelling of a membraneless microfluidic fuel cell with a flow-through porous anode[J]. Journal of Power Sources, 2019, 420: 88-98. |
26 | Krishnamurthy D, Johansson E O, Lee J W, et al. Computational modeling of microfluidic fuel cells with flow-through porous electrodes[J]. Journal of Power Sources, 2011, 196(23): 10019-10031. |
27 | Zhang T, Zhu X, Ye D D, et al. Cyclic voltammetry electrodeposition of well-dispersed Pd nanoparticles on carbon paper as a flow-through anode for microfluidic direct formate fuel cells[J]. Nanoscale, 2020, 12(39): 20270-20278. |
28 | Hou J X, Liu Z L, Zhang P Y. A new method for fabrication of graphene/polyaniline nano complex modified microbial fuel cell anodes[J]. Journal of Power Sources, 2013, 224: 139-144. |
29 | Zhang T, Yu C H, Zhu X,et al. Reduction of formate crossover in sequential-flow microfluidic fuel cells[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1526-1531. |
30 | Raj kumar T, Gnana kumar G, Manthiram A. Biomass-derived 3D carbon aerogel with carbon shell-confined binary metallic nanoparticles in CNTs as an efficient electrocatalyst for microfluidic direct ethylene glycol fuel cells[J]. Advanced Energy Materials, 2019, 9(16): 1803238. |
31 | Yang Y, Ye D D, Zhu X, et al. Boosting power density of microfluidic biofuel cell with porous three-dimensional graphene@ nickel foam as flow-through anode[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18516-18520. |
32 | Lan Q, Ye D D, Zhu X, et al. Direct formate/persulfate microfluidic fuel cell with a catalyst-free cathode and high power density[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(16): 5623-5630. |
33 | Liu Z F, Ye D D, Chen R, et al. A dual-functional three-dimensional herringbone-like electrode for a membraneless microfluidic fuel cell[J]. Journal of Power Sources, 2019, 438: 227058. |
34 | 张彪, 叶丁丁, 朱恂, 等. 三维顺排阳极自呼吸微流体燃料电池性能特性[J]. 工程热物理学报, 2014, 35(6): 1153-1156. |
Zhang B, Ye D D, Zhu X, et al. Performance characteristics of an air-breathing microfluidic fuel cell with an aligned array of cylinder anodes[J]. Journal of Engineering Thermophysics, 2014, 35(6): 1153-1156. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[7] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[8] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[11] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[12] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[13] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[14] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[15] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 197
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||