化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2544-2555.DOI: 10.11949/0438-1157.20231130
黄静茹(), 陈佳轩, 张群锋, 阮晋, 朱来, 叶光华(
), 周兴贵
收稿日期:
2023-11-02
修回日期:
2024-04-09
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
叶光华
作者简介:
黄静茹(1999—),女,硕士研究生,y30210011@mail.ecust.edu.cn
基金资助:
Jingru HUANG(), Jiaxuan CHEN, Qunfeng ZHANG, Jin RUAN, Lai ZHU, Guanghua YE(
), Xinggui ZHOU
Received:
2023-11-02
Revised:
2024-04-09
Online:
2024-07-25
Published:
2024-08-09
Contact:
Guanghua YE
摘要:
以ZSM-5分子筛催化苯和乙烯烷基化为体系,建立并验证了一种三维各向异性扩散-反应数学模型,该模型考虑了分子筛形貌、孔结构和扩散各向异性的影响。模拟发现当分子筛颗粒体积和abc轴尺寸保持不变时,改变分子筛形貌并不会显著影响其表观活性,因而该情况下无须调控分子筛形貌;而当分子筛颗粒体积不变时,仅缩短b轴尺寸才能显著降低扩散阻力,提高催化剂表观活性,因而合成ZSM-5分子筛时缩短b轴尺寸最有利于扩散和反应。在分子筛颗粒中引入大孔可显著提高分子筛催化剂利用率和表观活性,保持大孔孔隙率不变时,减小大孔孔径更有利。存在最优大孔孔隙率以平衡扩散阻力和活性材料含量,当分子筛粒径4 μm、大孔孔径300 nm时,最优大孔孔隙率0.16,对应最高表观反应速率80.5 mol/(m3·s)。另外,由于分子筛内扩散各向异性的影响,当大孔取向平行于c轴时最有利。结果可为苯和乙烯烷基化ZSM-5分子筛催化剂乃至其他分子筛催化剂的设计优化提供一定的理论指导。
中图分类号:
黄静茹, 陈佳轩, 张群锋, 阮晋, 朱来, 叶光华, 周兴贵. ZSM-5分子筛结构对苯烷基化反应性能影响的数值模拟研究[J]. 化工学报, 2024, 75(7): 2544-2555.
Jingru HUANG, Jiaxuan CHEN, Qunfeng ZHANG, Jin RUAN, Lai ZHU, Guanghua YE, Xinggui ZHOU. Effect of ZSM-5 zeolite structure on the reaction performance of benzene alkylation: a computational study[J]. CIESC Journal, 2024, 75(7): 2544-2555.
参数 | 数值 |
---|---|
温度T/K | 653 |
压力P/bar | 5 |
苯和乙烯摩尔比 | 5∶1 |
单胞密度/(mol·m-3) | 309.50 |
正反应速率常数k1/s-1 | 696 |
逆反应速率常数k-1/s-1 | 0.137 |
乙烯扩散系数DE,0/(m2·s-1) | 99.5×10-13 |
苯扩散系数DB,0/(m2·s-1) | 2.0×10-13 |
乙苯扩散系数DE+B,0/(m2·s-1) | 1.6×10-13 |
表1 模拟所用参数
Table 1 Parameters used in simulations
参数 | 数值 |
---|---|
温度T/K | 653 |
压力P/bar | 5 |
苯和乙烯摩尔比 | 5∶1 |
单胞密度/(mol·m-3) | 309.50 |
正反应速率常数k1/s-1 | 696 |
逆反应速率常数k-1/s-1 | 0.137 |
乙烯扩散系数DE,0/(m2·s-1) | 99.5×10-13 |
苯扩散系数DB,0/(m2·s-1) | 2.0×10-13 |
乙苯扩散系数DE+B,0/(m2·s-1) | 1.6×10-13 |
条件 | 球形 | 立方形 | 药片形 | 棺形 |
---|---|---|---|---|
颗粒体积一致 | ![]() | ![]() | ![]() | ![]() |
l=2000 nm L=V/S=333 nm | m=1612 nm h=1612 nm l=1612 nm L=V/S=269 nm | m=1612 nm h=1612 nm l=1874 nm n=486 nm L=V/S=288 nm | m=1612 nm h=1612 nm l=2077 nm n=465 nm L=V/S=281 nm | |
颗粒表面积 一致 | ![]() | ![]() | ![]() | ![]() |
l=2000 nm L=V/S=333 nm | m=1447 nm h=1447 nm l=1447 nm L=V/S=241 nm | m=1498.5 nm h=1498.5 nm l=1742 nm n=435.5 nm L=V/S=268 nm | m=1481 nm h=1481 nm l=1908 nm n=427 nm L=V/S=258 nm |
表2 不同形状ZSM-5分子筛颗粒的尺寸参数
Table 2 Structural parameters of the ZSM-5 particles with different shapes
条件 | 球形 | 立方形 | 药片形 | 棺形 |
---|---|---|---|---|
颗粒体积一致 | ![]() | ![]() | ![]() | ![]() |
l=2000 nm L=V/S=333 nm | m=1612 nm h=1612 nm l=1612 nm L=V/S=269 nm | m=1612 nm h=1612 nm l=1874 nm n=486 nm L=V/S=288 nm | m=1612 nm h=1612 nm l=2077 nm n=465 nm L=V/S=281 nm | |
颗粒表面积 一致 | ![]() | ![]() | ![]() | ![]() |
l=2000 nm L=V/S=333 nm | m=1447 nm h=1447 nm l=1447 nm L=V/S=241 nm | m=1498.5 nm h=1498.5 nm l=1742 nm n=435.5 nm L=V/S=268 nm | m=1481 nm h=1481 nm l=1908 nm n=427 nm L=V/S=258 nm |
图3 不同形状ZSM-5分子筛颗粒的效率因子(η)和表观反应速率(Rapp)
Fig.3 Effectiveness factors (η) and apparent reaction rates (Rapp) of ZSM-5 zeolite particles with different morphologies
图4 颗粒表面积一致时不同形状ZSM-5分子筛颗粒内部浓度分布(切块为各形状的1/8)
Fig.4 Concentration distributions of ethylene and ethylbenzene in the ZSM-5 particles with different morphologies when the particle surface area is consistent (the displayed parts are 1/8 of each shape)
图5 不同a、b和c轴长度(a×b×c)ZSM-5分子筛颗粒的效率因子(η)和表观反应速率(Rapp)
Fig.5 Effectiveness factors (η) and apparent reaction rate (Rapp) of ZSM-5 zeolite particles with different a, b, c-axis lengths (a×b×c)
图6 不同a、b和c轴长度(a×b×c)ZSM-5分子筛颗粒内部浓度分布(切块为各形状的1/8)
Fig.6 Concentration distributions of ethylene and ethylbenzene in the ZSM-5 particles with different a, b, c-axis lengths (a×b×c) (the displayed parts are 1/8 of each shape)
图7 分子筛颗粒粒径对立方形ZSM-5分子筛颗粒效率因子(η)和表观反应速率(Rapp)的影响
Fig.7 The effects of particle size on effectiveness factor (η) and apparent reaction rate (Rapp) of cubic ZSM-5 zeolite particles
图8 不同粒径的立方形ZSM-5分子筛颗粒内部浓度分布(切块为各形状的1/8)
Fig.8 Concentration distributions of ethylene and ethylbenzene in the cubic ZSM-5 particles with different particle sizes (the displayed parts are 1/8 of each shape)
图9 立方形ZSM-5分子筛颗粒中大孔孔径对效率因子(η)和表观反应速率(Rapp)的影响
Fig.9 The effects of macropore size on effectiveness factor (η) and apparent reaction rate (Rapp) of cubic ZSM-5 zeolite particles
图10 具有不同大孔孔径的立方形ZSM-5分子筛颗粒内部浓度分布(切面垂直于孔道方向并位于颗粒中间位置)
Fig.10 Concentration distributions of ethylene and ethylbenzene in the cubic ZSM-5 particles with different macropore sizes (the displayed planes are perpendicular to macropore direction and in the middle of the zeolite particles)
图11 立方形ZSM-5分子筛颗粒中大孔孔隙率对效率因子(η)和表观反应速率(Rapp)的影响
Fig.11 The effects of macroporosity on effectiveness factor (η) and apparent reaction rate (Rapp) of cubic ZSM-5 zeolite particles
图12 具有不同大孔孔隙率的立方形ZSM-5分子筛颗粒内部浓度分布(切面垂直于孔道方向并位于颗粒中间位置)
Fig.12 Concentration distributions of ethylene and ethylbenzene in the cubic ZSM-5 particles with different macroporosities (the displayed planes are perpendicular to macropore direction and in the middle of the zeolite particles)
图13 立方形ZSM-5分子筛颗粒中大孔取向对效率因子(η)和表观反应速率(Rapp)的影响
Fig.13 The effects of macropore orientations on effectiveness factor (η) and apparent reaction rate (Rapp) of cubic ZSM-5 zeolite particles
图14 具有不同大孔取向的立方形ZSM-5分子筛颗粒内部浓度分布(切块为各形状的1/8)
Fig.14 Concentration distributions of ethylene and ethylbenzene in the cubic ZSM-5 particles with different macropore orientations (the displayed parts are 1/8 of each shape)
1 | 高俊华, 张立东, 胡津仙, 等. 改性ZSM-5上苯与乙醇烷基化反应条件的考察及再生评价[J]. 化工进展, 2008, 27(11): 1800-1804. |
Gao J H, Zhang L D, Hu J X, et al. Study on experimental conditions and regeneration performance of modified ZSM-5 in benzene alkylation with ethanol[J]. Chemical Industry and Engineering Progress, 2008, 27(11): 1800-1804. | |
2 | Mimura N, Saito M. Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide[J]. Catalysis Letters, 1999, 58(1): 59-62. |
3 | Al-Kinany M C, Al-Megren H A, Al-Ghilan E A, et al. Selective zeolite catalyst for alkylation of benzene with ethylene to produce ethylbenzene[J]. Applied Petrochemical Research, 2012, 2(3): 73-83. |
4 | Al-Zahrani S M, Al-Khattaf S S. Advances in development and industrial applications of ethylbenzene production processes[J]. Chinese Journal of Chemical Engineering, 2016, 37(1): 16-26. |
5 | 杨为民, 王振东, 孙洪敏, 等. 乙苯工艺技术开发及工业应用进展[J]. 催化学报, 2016, 37(1): 16-26. |
Yang W M, Wang Z D, Sun H M, et al. Advances in development and industrial applications of ethylbenzene processes[J]. Chinese Journal of Catalysis, 2016, 37(1): 16-26. | |
6 | 程挥戈, 牛韦, 汤兴蕾, 等. 乙烷与苯经接力催化路线制备乙苯[J]. 化工学报, 2021, 72(7): 3658-3667. |
Cheng H G, Niu W, Tang X L, et al. Synthesis of ethylbenzene from ethane and benzene by tandem catalysis[J]. CIESC Journal, 2021, 72(7): 3658-3667. | |
7 | 李建伟, 王嘉, 刘学玲, 等. 催化干气制乙苯第三代技术的工业应用[J]. 化工进展, 2010, 29(9): 1790-1795. |
Li J W, Wang J, Liu X L, et al. Industrial application of ethylbenzene production technology from FCC dry gas[J]. Chemical Industry and Engineering Progress, 2010, 29(9): 1790-1795. | |
8 | 程志林, 赵训志, 邢淑建. 乙苯生产技术及催化剂研究进展[J]. 工业催化, 2007, 15(7): 4-9. |
Cheng Z L, Zhao X Z, Xing S J. Researches in ethylbenzene production technique and catalysts[J]. Industrial Catalysis, 2007, 15(7): 4-9. | |
9 | Tian H, Liu S, Liu Q. HZSM-5 zeolite modification and catalytic reaction mechanism in the reaction of cyclohexene hydration[J]. RSC Advances, 2022, 12(38): 24654-24669. |
10 | 杨为民, 孙洪敏, 陈庆龄. 苯与乙烯气相烷基化制乙苯用分子筛催化剂的研制[J]. 精细石油化工进展, 2002, 3(4): 12-14. |
Yang W M, Sun H M, Chen Q L. Development of zeolite-base catalysts for preparing ethylbenzene from benzene and ethylene by vapor phase alkylation[J]. Advances in Fine Fetrochemicals, 2002, 3(4): 12-14. | |
11 | 王岳, 李凤艳, 赵天波, 等. 纳米ZSM-5分子筛的合成、表征及甲苯歧化催化性能[J]. 石油化工高等学校学报, 2005, 18(4): 20-23, 4. |
Wang Y, Li F Y, Zhao T B, et al. Synthesis and characterization of nanoparticle ZSM-5 zeolite and catalytic properties of toluene disproportionation[J]. Journal of Petrochemical Universities, 2005, 18(4): 20-23, 4. | |
12 | Zhang J X, Zhou A J, Gawande K, et al. b-axis-oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: synergy of acid sites and diffusion[J]. ACS Catalysis, 2023, 13(6): 3794-3805. |
13 | Yuan P, Wang H, Xue Y F, et al. Catalytic properties of different crystal sizes for ZSM-5 zeolites on the alkylation of benzene with methanol and optimization of the reaction conditions[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1775-1784. |
14 | Jin R Z, Ma K, Xu S T, et al. Effect of acid distribution and pore structure of ZSM-5 on catalytic performance[J]. Reaction Chemistry & Engineering, 2022, 7(10): 2152-2162. |
15 | Wang Q T, Han W W, Hu H L, et al. Influence of the post-treatment of HZSM-5 zeolite on catalytic performance for alkylation of benzene with methanol[J]. Chinese Journal of Chemical Engineering, 2017, 25(12): 1777-1783. |
16 | Hansen N, Brüggemann T, Bell A T, et al. Theoretical investigation of benzene alkylation with ethene over H-ZSM-5[J]. The Journal of Physical Chemistry C, 2008, 112(39): 15402-15411. |
17 | Hansen N, Kerber T, Sauer J, et al. Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2: DFT study[J]. Journal of the American Chemical Society, 2010, 132(33): 11525-11538. |
18 | Hansen N, Krishna R, van Baten J M, et al. Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-5: a multiscale approach[J]. Chemical Engineering Science, 2010, 65(8): 2472-2480. |
19 | Li H, Ye M, Liu Z M. A multi-region model for reaction-diffusion process within a porous catalyst pellet[J]. Chemical Engineering Science, 2016, 147: 1-12. |
20 | Rao S M, Saraçi E, Gläser R, et al. Surface barriers as dominant mechanism to transport limitations in hierarchically structured catalysts-application to the zeolite-catalyzed alkylation of benzene with ethylene[J]. Chemical Engineering Journal, 2017, 329: 45-55. |
21 | Rosen G. The mathematical theory of diffusion and reaction in permeable catalysts[J]. Bulletin of Mathematical Biology, 1976, 38(1): 95-96. |
22 | Krishna R, Paschek D, Baur R. Modeling the occupancy dependence of diffusivities in zeolites[J]. Microporous and Mesoporous Materials, 2004, 76(1/2/3): 233-246. |
23 | Krishna R, van Baten J M. Effect of pore size and shape on the self-diffusivity of methane in silicalite-1 and ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2008, 109(1/2/3): 91-97. |
24 | Krishna R, van Baten J M, García-Pérez E, et al. Adsorption equilibrium and kinetics of methane and ethane in silicalite-1 and ZSM-5 zeolites: a molecular simulation study[J]. Industrial & Engineering Chemistry Research, 2007, 46(9): 2974-2982. |
25 | Hansen N, Krishna R, van Baten J M, et al. Analysis of diffusion limitation in the alkylation of benzene over H-ZSM-5 by combining quantum chemical calculations, molecular simulations, and a continuum approach[J]. The Journal of Physical Chemistry C, 2009, 113(1): 235-246. |
26 | Caro J, Noack M, Richter Mendau J, et al. Selective sorption uptake kinetics of n-hexane on ZSM 5-A new method for measuring anisotropic diffusivities[J]. The Journal of Physical Chemistry, 1993, 97(51): 13685-13690. |
27 | Langmuir I. The constitution and fundamental properties of solids and liquids[J]. Journal of the Franklin Institute, 1917, 183(1): 102-105. |
28 | Christensen C H, Johannsen K, Schmidt I, et al. Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials[J]. Journal of the American Chemical Society, 2003, 125(44): 13370-13371. |
29 | Xue T, Wang Y M, He M Y. Facile synthesis of nano-sized NH4-ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2012, 156: 29-35. |
30 | Mintova S, Gilson J P, Valtchev V. Advances in nanosized zeolites[J]. Nanoscale, 2013, 5(15): 6693-6703. |
31 | Fodor D, Pacosová L, Krumeich F, et al. Facile synthesis of nano-sized hollow single crystal zeolites under mild conditions[J]. Chemical Communications, 2014, 50(1): 76-78. |
32 | Schreiber M W, Rodriguez-Niño D, Gutiérrez O Y, et al. Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites[J]. Catalysis Science & Technology, 2016, 6(22): 7976-7984. |
33 | Sun M H, Gao S S, Hu Z Y, et al. Boosting molecular diffusion following the generalized Murray’s law by constructing hierarchical zeolites for maximized catalytic activity[J]. National Science Review, 2022, 9(12): nwac236. |
34 | Li S, Yang H, Wang S, et al. Improvement of adsorption and catalytic properties of zeolites by precisely controlling their particle morphology[J]. Chem. Commun., 2022, 58(13): 2041-2054. |
35 | Zhang K, Fernandez S, O’Brien J T, et al. Organotemplate-free synthesis of hierarchical beta zeolites[J]. Catalysis Today, 2018, 316: 26-30. |
[1] | 冀钟, 赵彦玲, 陈雨濛, 高林霞, 王翼鹏, 刘欢. ZSM-5分子筛对典型涂装VOCs的吸附性能及机理研究[J]. 化工学报, 2024, 75(6): 2332-2343. |
[2] | 孟金琳, 汪宇, 张群锋, 叶光华, 周兴贵. 介孔材料低温氮气吸脱附的孔道网络模型[J]. 化工学报, 2023, 74(2): 893-903. |
[3] | 白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
[4] | 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668. |
[5] | 汪宇, 张禹, 童微雯, 叶光华, 周兴贵, 袁渭康. 锂离子电池电极中多级孔道结构设计[J]. 化工学报, 2021, 72(12): 6340-6350. |
[6] | 张文静, 李静, 魏子栋. 燃料电池空气电极的孔道结构调控[J]. 化工学报, 2020, 71(10): 4553-4574. |
[7] | 唐松山, 泮泽优, 张长森, 王登台, 薛翔飞, 曹云峰, 刘永刚, 张瑞芹. 碱改性HZSM-5催化热解木质素催化剂失活分析[J]. 化工学报, 2017, 68(12): 4739-4749. |
[8] | 任申勇, 张卡, 闫慧, 张建华, 曾鹏晖, 郭巧霞, 申宝剑. 在大孔硅基囊泡材料孔道内原位接枝有机聚合物[J]. 化工学报, 2016, 67(8): 3507-3514. |
[9] | 赵丹, 袁美华, 张耀远, 姜桂元, 赵震, 刘佳, 韩善磊, 孙华倩. Cr掺杂ZSM-5双功能催化剂的制备及其催化裂解正丁烷[J]. 化工学报, 2016, 67(8): 3400-3407. |
[10] | 李晓慧, 郑庆庆, 米硕, 申宝剑. 磷铝复合改性ZSM-5分子筛及其催化性能[J]. 化工学报, 2016, 67(8): 3357-3362. |
[11] | 潘红艳1,田敏1,何志艳1,花开慧2,林倩3. 甲醇制烯烃用ZSM-5分子筛的研究进展[J]. 化工进展, 2014, 33(10): 2625-2633. |
[12] | 耿丹,陈玉丽,居沈贵. 模板剂对ZSM-5分子筛膜脱硫的影响[J]. 化工进展, 2014, 33(05): 1230-1235. |
[13] | 王兴慧, 朱桂茹, 高从堦. 短孔道介孔二氧化硅SBA-15对铀的吸附性能[J]. 化工学报, 2013, 64(7): 2480-2487. |
[14] | 唐荣芝1,2,陈 彤1,王公应1. 杂多化合物催化剂的固载方法及应用[J]. 化工进展, 2013, 32(09): 2136-2142. |
[15] | 王志喜,王亚东,张 睿,孟祥海,刘植昌,徐春明. 催化裂解制低碳烯烃技术研究进展[J]. 化工进展, 2013, 32(08): 1818-1824. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||