化工学报 ›› 2024, Vol. 75 ›› Issue (4): 1533-1542.DOI: 10.11949/0438-1157.20231296
韩宇(), 周乐, 张鑫, 罗勇(
), 孙宝昌, 邹海魁, 陈建峰
收稿日期:
2023-12-05
修回日期:
2024-04-09
出版日期:
2024-04-25
发布日期:
2024-06-06
通讯作者:
罗勇
作者简介:
韩宇(1998—),女,博士研究生,hanyuqkd@163.com
基金资助:
Yu HAN(), Le ZHOU, Xin ZHANG, Yong LUO(
), Baochang SUN, Haikui ZOU, Jianfeng CHEN
Received:
2023-12-05
Revised:
2024-04-09
Online:
2024-04-25
Published:
2024-06-06
Contact:
Yong LUO
摘要:
旋转填充床反应器(RPB)中液体的高速冲刷和较强的离心力容易导致整体式催化剂的涂层和活性组分从基体表面脱落造成损失,限制了整体式催化剂在RPB反应器中的应用。因此,研究整体式催化剂涂层和活性组分的黏附性,以提升催化剂在RPB反应器中的催化活性和使用寿命具有重要意义。基于此,采用超重力喷涂法在泡沫镍(NF)基体表面负载氧化硅(SiO2)涂层,制备了具有高黏附性的Pd/SiO2(x)/NF整体式催化剂,通过超声振荡、BET、XRD、SEM和XPS等对整体式催化剂进行测试和分析。当RPB反应器的转速为1200 r/min时,整体式催化剂具有优异的黏附性能,涂层的脱落率为4%。以对硝基苯甲醚(PNA)催化加氢制备对氨基苯甲醚(PA)为探针反应,RPB反应器中Pd/SiO2(1200)/NF整体式催化剂具有较好的催化活性,180 min 时PNA转化率为98.9%。本工作可为开发高黏附性的整体式催化剂提供新的途径。
中图分类号:
韩宇, 周乐, 张鑫, 罗勇, 孙宝昌, 邹海魁, 陈建峰. 高黏附性Pd/SiO2/NF整体式催化剂的制备及加氢性能研究[J]. 化工学报, 2024, 75(4): 1533-1542.
Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance[J]. CIESC Journal, 2024, 75(4): 1533-1542.
图2 催化反应评价装置示意图1—H2钢瓶;2—N2钢瓶;3—控制器;4—超重力反应器;5—电机;6—排空口;7—压力表;8—取样口;9—转子;10—提升器
Fig.2 Schematic diagram of experimental apparatus for catalytic hydrogenation
样品 | Pd的实际负载量/%(mass) |
---|---|
Pd/SiO2(0)/NF | 0.4920 |
Pd/SiO2(200)/NF | 0.4951 |
Pd/SiO2(500)/NF | 0.4879 |
Pd/SiO2(800)/NF | 0.5009 |
Pd/SiO2(1200)/NF | 0.4910 |
Pd/SiO2(1500)/NF | 0.4881 |
表1 整体式催化剂Pd的实际负载量
Table 1 The actual of Pd loads in monolithic catalysts
样品 | Pd的实际负载量/%(mass) |
---|---|
Pd/SiO2(0)/NF | 0.4920 |
Pd/SiO2(200)/NF | 0.4951 |
Pd/SiO2(500)/NF | 0.4879 |
Pd/SiO2(800)/NF | 0.5009 |
Pd/SiO2(1200)/NF | 0.4910 |
Pd/SiO2(1500)/NF | 0.4881 |
图5 Pd/SiO2(0)/NF和Pd/SiO2(1200)/NF的N2吸脱附曲线和孔径分布
Fig.5 Nitrogen adsorption-desorption curve and pore size distribution of Pd/SiO2(0)/NF and Pd/SiO2(1200)/NF
1 | Zhao H, Shao L, Chen J F. High-gravity process intensification technology and application[J]. Chemical Engineering Journal, 2010, 156(3): 588-593. |
2 | 申红艳, 刘有智, 朱芝敏. 超重力反应器制备纳米氢氧化镁的实验研究[J]. 无机盐工业, 2019, 51(4): 14-18, 31. |
Shen H Y, Liu Y Z, Zhu Z M. Study on preparation of magnesium hydroxide nanoparticles with high-gravity reactor[J]. Inorganic Chemicals Industry, 2019, 51(4): 14-18, 31. | |
3 | Jiao W Z, Luo S, He Z, et al. Applications of high gravity technologies for wastewater treatment: a review[J]. Chemical Engineering Journal, 2017, 313: 912-927. |
4 | 尹龙天, 李秀金, 张良, 等. 超重力反应器内MEA-乙醇溶液用于沼气脱碳的优化传质模型[J]. 中国沼气, 2022, 40(2): 39-46. |
Yin L T, Li X J, Zhang L, et al. Optimized mass transfer model of CO2 removal from biogas by MEA-ethanol solution in high gravity reactor[J]. China Biogas, 2022, 40(2): 39-46. | |
5 | Rao D P, Bhowal A, Goswami P S. Process intensification in rotating packed beds (HIGEE): an appraisal[J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 1150-1162. |
6 | Wang B J, Chu G W, Li Y B, et al. Intensified micro-mixing effects on evolution of oxygen vacancies of CeO2-based catalysts for improved CO oxidation[J]. Chemical Engineering Science, 2021, 244: 116814. |
7 | Wu D F, Zhou J C, Li Y D. Mechanical strength of solid catalysts: recent developments and future prospects[J]. AIChE Journal, 2007, 53(10): 2618-2629. |
8 | 单学蕾, 关乃佳, 曾翔, 等. 不同硅铝比的Cu-ZSM-5/堇青石整体式催化剂的NO分解反应性能[J]. 催化学报, 2001, 22(3): 242-244. |
Shan X L, Guan N J, Zeng X, et al. NO decomposition on Cu-ZSM-5/cordierite monolithic catalyst samples with different Si/Al ratios[J]. Chinese Journal of Catalysis, 2001, 22(3): 242-244. | |
9 | Luo Z H, Feng M, Lu H, et al. Nitrile butadiene rubber hydrogenation over a monolithic Pd/CNTs@Nickel Foam catalysts: tunable CNTs morphology effect on catalytic performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1812-1822. |
10 | 邹海魁, 初广文, 向阳, 等. 超重力反应强化技术最新进展[J]. 化工学报, 2015, 66(8): 2805-2809. |
Zou H K, Chu G W, Xiang Y, et al. New progress of HIGEE reaction technology[J]. CIESC Journal, 2015, 66(8): 2805-2809. | |
11 | Jo S, Jin J, Kwon S. The preparation of a metal foam support of Pt/Al2O3 for combustion of hydrogen[J]. Catalysis Today, 2010, 155(1/2): 45-50. |
12 | Catillon S, Louis C, Rouget R. Development of new Cu0–ZnⅡ/Al2O3 catalyst supported on copper metallic foam for the production of hydrogen by methanol steam reforming[J]. Topics in Catalysis, 2004, 30(1): 463-467. |
13 | Kan J W, Deng L, Li B, et al. Performance of Co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation[J]. Applied Catalysis A: General, 2017, 530: 21-29. |
14 | Madito M J, Matshoba K S, Ochai-Ejeh F U, et al. Nickel-copper graphene foam prepared by atmospheric pressure chemical vapour deposition for supercapacitor applications[J]. Surface and Coatings Technology, 2020, 383: 125230. |
15 | Jiang J, Liu J P, Huang X T, et al. General synthesis of large-scale arrays of one-dimensional nanostructured Co3O4 directly on heterogeneous substrates[J]. Crystal Growth & Design, 2010, 10(1): 70-75. |
16 | Wang Z W, Lu B C, Zhang X K, et al. Preparation and application of a flower-rod-like Bi2S3/Co3O4/rGO/nickel foam supercapacitor electrode[J]. New Journal of Chemistry, 2022, 46(2): 857-867. |
17 | Yu Z T, Wang Y P, Jiang L, et al. Conversion of woody oil into bio-oil in a downdraft reactor using a novel silicon carbide foam supported MCM41 composite catalyst[J]. RSC Advances, 2019, 9(34): 19729-19739. |
18 | Zhu J, Jia Y, Li M S, et al. Carbon nanofibers grown on anatase washcoated cordierite monolith and its supported palladium catalyst for cinnamaldehyde hydrogenation[J]. Industrial & Engineering Chemistry Research, 2013, 52, 1224-1233. |
19 | Zamaro J M, Ulla M A, Miró E E. The effect of different slurry compositions and solvents upon the properties of ZSM5-washcoated cordierite honeycombs for the SCR of NOx with methane[J]. Catalysis Today, 2005, 107: 86-93. |
20 | Ma C, Sang L, Duan X N, et al. An efficient method for enhancing adhesion and uniformity of Al2O3 coatings on nickel micro-foam used in micropacked beds[J]. Chinese Journal of Chemical Engineering, 2021, 39: 162-172. |
21 | Zhao B B, Tian C H, Zhang Y, et al. Size control of monodisperse nonporous silica particles by seed particle growth[J]. Particuology, 2011, 9(3): 314-317. |
22 | Chen G, Zhu X, Chen R, et al. Gas-liquid-solid monolithic microreactor with Pd nanocatalyst coated on polydopamine modified nickel foam for nitrobenzene hydrogenation[J]. Chemical Engineering Journal, 2018, 334: 1897-1904. |
23 | Xiao L, Yao P, Xue T, et al. One-step electrodeposition synthesis of Ni/NiS x @NF catalyst on nickel foam (NF) for hydrogen evolution reaction[J]. Molecular Catalysis, 2021, 511: 111694. |
24 | 陆张银, 洪云阳, 戴玉玉, 等. 高(111)晶面暴露的Pd纳米颗粒的制备与表征及其加氢性能[J]. 无机化学学报, 2021, 37(6): 1143-1151. |
Lu Z Y, Hong Y Y, Dai Y Y, et al. Synthesis and characterization of palladium nanoparticles with high proportion of exposed (111) facet for hydrogenation performance[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(6): 1143-1151. | |
25 | Chen G, Zhu X, Chen R, et al. Hierarchical Pd@Ni catalyst with a snow-like nanostructure on Ni foam for nitrobenzene hydrogenation[J]. Applied Catalysis A: General, 2019, 575: 238-245. |
26 | Liu Y Z, Luo Y, Chu G W, et al. Monolithic catalysts with Pd deposited on a structured nickel foam packing[J]. Catalysis Today, 2016, 273: 34-40. |
27 | 王小强, 杨宁, 徐力, 等. 铁锰基整体式催化剂催化燃烧甲苯和氯苯性能[J]. 中国环境科学, 2022, 42(7): 3084-3092. |
Wang X Q, Yang N, Xu L, et al. Catalytic performance of Fe Mn-based monolithic catalysts for toluene and chlorobenzene catalytic combustion[J]. China Environmental Science, 2022, 42(7): 3084-3092. | |
28 | 周皞, 葛梦瑶, 伍士国, 等. 载体对铁基整体式催化剂上丙烯催化还原NO的影响[J]. 化工进展, 2018, 37(12): 4693-4700. |
Zhou H, Ge M Y, Wu S G, et al. Effects of supports on the iron based monolithic catalysts for NO reduction with propene[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4693-4700. | |
29 | Li S J, Zou Y C, Li L, et al. A self-assembled flower-like structure of nickel-cobalt phosphide nanosheets supported on nickel foam for electrochemical hydrogen evolution reaction[J]. ChemistrySelect, 2019, 4(20): 6295-6303. |
30 | Mirzaee M, Dehghanian C, Sabet Bokati K. One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor[J]. Journal of Electroanalytical Chemistry, 2018, 813: 152-162. |
31 | Zhang Z H, Li J J, Luan C, et al. Preparation and characterization of palladium/polypyrrole-reduced graphene oxide/foamed nickel composite electrode and its electrochemical dechlorination of triclosan[J]. Arabian Journal of Chemistry, 2020, 13(2): 3963-3973. |
32 | Nie M, Sun H, Liao J M, et al. Study on the catalytic performance of Pd/TiO2 electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6441-6447. |
33 | 李盼, 马俊洋, 陈志豪, 等. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
Li P, Ma J Y, Chen Z H, et al. Effect of the morphology of Ru/ α-MnO2 on NH3-SCO performance[J]. CIESC Journal, 2023, 74(7): 2908-2918. | |
34 | Yue H R, Zhao Y J, Zhao L, et al. Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: Enhanced internal mass transfer and stability[J]. AIChE Journal, 2012, 58(9): 2798-2809. |
[1] | 张因, 郭健健, 任欢杰, 程娟, 李海涛, 武建兵, 赵永祥. 插层阴离子对以类水滑石为前体Ni-Al2O3催化剂催化乙酰丙酸加氢性能的影响[J]. 化工学报, 2020, 71(8): 3614-3624. |
[2] | 张茜, 王艳华. 温控相分离纳米Ir催化α,β-不饱和醛、酮选择加氢[J]. 化工学报, 2019, 70(9): 3396-3403. |
[3] | 唐铨, 郭杨龙, 詹望成, 郭耘, 王丽, 王筠松. 用于丙烷催化燃烧的PdxPty-ZSM-5/Cordierite整体式催化剂[J]. 化工学报, 2019, 70(3): 944-950. |
[4] | 屠佳成, 桑乐, 艾宁, 徐建鸿, 张吉松. 连续微反应加氢技术在有机合成中的研究进展[J]. 化工学报, 2019, 70(10): 3859-3868. |
[5] | 王杰, 张因, 郭健健, 赵丽丽, 赵永祥. Ni/ZrO2-SiO2催化剂催化乙酰丙酸加氢合成γ-戊内酯[J]. 化工学报, 2018, 69(8): 3452-3459. |
[6] | 芮泽宝, 纪红兵. 有机废气催化燃烧过程中多尺度效应和催化剂设计[J]. 化工学报, 2018, 69(1): 317-326. |
[7] | 李晨阳, 冯淼, 崔海峰, 曹贵平, 吕慧, 陈荣起. 蜂窝陶瓷骨架微结构修饰调控制备Pd/CNTs@CHC催化剂用于PS加氢[J]. 化工学报, 2017, 68(7): 2746-2754. |
[8] | 冯鹏飞, 刁琰琰, 王蕾, 任保增, 张锁江. 甲基丙烯醛氧化酯化整体式催化剂制备及评价[J]. 化工学报, 2015, 66(8): 2990-2998. |
[9] | 陈伦刚, 刘勇, 定明月, 张兴华, 李宇萍, 张琦, 王铁军, 马隆龙. Ru催化加氢选择性脱除F-T合成水相中的含氧化合物[J]. 化工学报, 2014, 65(11): 4347-4355. |
[10] | 孙梅娟1,黄晓典1,关清卿1,张春云2,柴欣生2,田森林1,宁平1,谷俊杰1. 超临界乙醇体系中苯酚催化加氢的降解规律[J]. 化工进展, 2014, 33(07): 1902-1907. |
[11] | 孙洪志,王 倩,宋名秀,阿不都拉江?那斯尔,王付燕,朱维群. CO2化学利用的研究进展[J]. 化工进展, 2013, 32(07): 1666-1672. |
[12] | 方宇,王丽军,吴玮,李希. 整体式催化剂芯片的仿生设计与优化[J]. 化工学报, 2012, 63(8): 2418-2424. |
[13] | 张军华1,国海光1,郇昌永1,姜 莉2,沈 强1. Pt/C催化加氢法制备DSD酸[J]. 化工进展, 2012, 31(09): 2070-2074. |
[14] | 刘少文1,2,涂文艳2,包传平2. La2O3助剂对Ni/γ-Al2O3/堇青石结构化催化剂催化加氢合成间苯二胺性能的影响[J]. 化工进展, 2012, 31(01 ): 122-125. |
[15] | 顾 斌,王 红,卯福林,周小平. Cu/SiO2两步法催化甘油氢解制备1,2-丙二醇 [J]. CIESC Journal, 2011, 30(9): 1961-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 194
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||