化工学报 ›› 2024, Vol. 75 ›› Issue (1): 377-390.DOI: 10.11949/0438-1157.20230685
• 材料化学工程与纳米技术 • 上一篇
孟祥军1,2(), 花莹曦2, 张长金2, 张弛1, 杨林睿1, 杨若昔1, 刘鉴漪1, 许春建1(
)
收稿日期:
2023-07-05
修回日期:
2023-09-01
出版日期:
2024-01-25
发布日期:
2024-03-11
通讯作者:
许春建
作者简介:
孟祥军(1979—),男,博士研究生,研究员,mengxiangjun@pericsg.com
基金资助:
Xiangjun MENG1,2(), Yingxi HUA2, Changjin ZHANG2, Chi ZHANG1, Linrui YANG1, Ruoxi YANG1, Jianyi LIU1, Chunjian XU1(
)
Received:
2023-07-05
Revised:
2023-09-01
Online:
2024-01-25
Published:
2024-03-11
Contact:
Chunjian XU
摘要:
电子级氘气在集成电路制造的高温退火工艺中起到关键作用,高端制程工艺要求其纯度高达6N。提出了完整的6N氘气电解制备与纯化技术路线,包括:(1)设计出高效FeNi@ClBC OER催化剂,性能显著优于商用催化剂,提高了催化效率并降低整体能耗;(2)提出了电解阳极端氧气气提脱除重水中氮气等杂质的工艺流程,重水杂质的减少降低了氘气纯化的难度;(3)提出了深度脱氧、脱水工艺流程,筛选出最佳脱氧催化剂和脱水吸附分子筛并对工艺参数进行了优化,实现产品中杂质氧和水含量(体积分数)分别低于1×10-8和1.65×10-7的目标。实验得到的超高纯氘气产品指标达到了6N,满足先进制程集成电路制造需求,为低成本生产超高纯氘气提供了参考。
中图分类号:
孟祥军, 花莹曦, 张长金, 张弛, 杨林睿, 杨若昔, 刘鉴漪, 许春建. 6N电子级氘气的制备与纯化技术研究[J]. 化工学报, 2024, 75(1): 377-390.
Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas[J]. CIESC Journal, 2024, 75(1): 377-390.
技术指标 | 要求 |
---|---|
化学纯度/%(体积分数) | 99.9999 |
丰度/% | 99.8 |
O2(体积分数) | 0.2×10-6 |
N2(体积分数) | 0.2×10-6 |
CO2(体积分数) | 0.1×10-6 |
CO(体积分数) | 0.1×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 |
水分(体积分数) | 0.2×10-6 |
表1 先进制程集成电路用6N电子级氘气技术指标
Table 1 Technical specifications for 6N electronic-grade deuterium gas for advanced process of integrated circuits
技术指标 | 要求 |
---|---|
化学纯度/%(体积分数) | 99.9999 |
丰度/% | 99.8 |
O2(体积分数) | 0.2×10-6 |
N2(体积分数) | 0.2×10-6 |
CO2(体积分数) | 0.1×10-6 |
CO(体积分数) | 0.1×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 |
水分(体积分数) | 0.2×10-6 |
技术指标 | 先进制程集成电路 用6N电子级氘气 技术指标 | 电解产生粗品 氘气 |
---|---|---|
化学纯度/%(体积分数) | 99.9999 | 99.69 |
丰度/% | 99.8 | 99.1 |
O2(体积分数) | 0.2×10-6 | 3000 |
N2(体积分数) | 0.2×10-6 | 4.6×10-6 |
CO2(体积分数) | 0.1×10-6 | 3.2×10-6 |
CO(体积分数) | 0.1×10-6 | 2.9×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 | 2.7×10-6 |
水分(体积分数) | 0.2×10-6 | 16900×10-6 |
表2 电解重水制备的氘气技术指标
Table 2 Technical specifications for D2 prepared by electrolysis of deuterium oxide
技术指标 | 先进制程集成电路 用6N电子级氘气 技术指标 | 电解产生粗品 氘气 |
---|---|---|
化学纯度/%(体积分数) | 99.9999 | 99.69 |
丰度/% | 99.8 | 99.1 |
O2(体积分数) | 0.2×10-6 | 3000 |
N2(体积分数) | 0.2×10-6 | 4.6×10-6 |
CO2(体积分数) | 0.1×10-6 | 3.2×10-6 |
CO(体积分数) | 0.1×10-6 | 2.9×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 | 2.7×10-6 |
水分(体积分数) | 0.2×10-6 | 16900×10-6 |
原料N2含量(体积分数)×106 | 产品N2含量(体积分数)×106 | |||||
---|---|---|---|---|---|---|
60% | 65% | 70% | 75% | 80% | 90% | |
200 | 78.88 | 71.21 | 61.30 | 51.40 | 41.49 | 21.67 |
100 | 39.44 | 35.60 | 30.65 | 25.70 | 20.74 | 10.84 |
50 | 19.72 | 17.80 | 15.33 | 12.85 | 10.37 | 5.42 |
20 | 7.89 | 7.12 | 6.13 | 5.14 | 4.15 | 2.17 |
5 | 1.97 | 1.78 | 1.53 | 1.28 | 1.037 | 0.54 |
表3 不同传质效率下鼓泡气提去除N2的模拟结果
Table 3 Simulation results of N2 removal by bubbling stripping under different mass transfer efficiencies
原料N2含量(体积分数)×106 | 产品N2含量(体积分数)×106 | |||||
---|---|---|---|---|---|---|
60% | 65% | 70% | 75% | 80% | 90% | |
200 | 78.88 | 71.21 | 61.30 | 51.40 | 41.49 | 21.67 |
100 | 39.44 | 35.60 | 30.65 | 25.70 | 20.74 | 10.84 |
50 | 19.72 | 17.80 | 15.33 | 12.85 | 10.37 | 5.42 |
20 | 7.89 | 7.12 | 6.13 | 5.14 | 4.15 | 2.17 |
5 | 1.97 | 1.78 | 1.53 | 1.28 | 1.037 | 0.54 |
原料CO2含量(体积分数)×106 | 产品CO2含量(体积分数)×106 | |||||
---|---|---|---|---|---|---|
60% | 65% | 70% | 75% | 80% | 90% | |
100 | 44.36 | 39.73 | 35.09 | 30.46 | 25.82 | 16.55 |
50 | 22.18 | 19.87 | 17.55 | 15.23 | 12.91 | 8.27 |
20 | 8.87 | 7.95 | 7.02 | 6.09 | 5.17 | 3.31 |
5 | 2.22 | 1.99 | 1.76 | 1.52 | 1.29 | 0.83 |
表4 不同传质效率下鼓泡气提去除CO2的模拟结果
Table 4 Simulation results of CO2 removal by bubbling stripping under different mass transfer efficiencies
原料CO2含量(体积分数)×106 | 产品CO2含量(体积分数)×106 | |||||
---|---|---|---|---|---|---|
60% | 65% | 70% | 75% | 80% | 90% | |
100 | 44.36 | 39.73 | 35.09 | 30.46 | 25.82 | 16.55 |
50 | 22.18 | 19.87 | 17.55 | 15.23 | 12.91 | 8.27 |
20 | 8.87 | 7.95 | 7.02 | 6.09 | 5.17 | 3.31 |
5 | 2.22 | 1.99 | 1.76 | 1.52 | 1.29 | 0.83 |
i | j | bij | bji |
---|---|---|---|
O2 | CO | 16.9052 | -17.2747 |
O2 | CO2 | 76.4046 | -182.302 |
O2 | D2O | 60.9711 | -130.462 |
O2 | CH4 | 54.3353 | -47.5285 |
O2 | N2 | 3.24432 | -2.38266 |
CO | CO2 | 85.053 | -190.634 |
CO | D2O | 70.63 | -137.331 |
CO | CH4 | 68.8156 | -61.7226 |
CO | N2 | 21.9528 | -20.733 |
CO2 | D2O | -289.273 | -209.6 |
CO2 | CH4 | -44.0607 | -14.5141 |
CO2 | N2 | -130.213 | 46.8441 |
D2O | CH4 | -2018.99 | -538.555 |
D2O | N2 | -109.55 | 4.10097 |
CH4 | N2 | -42.726 | 45.0976 |
表5 Wilson方程的二元交互参数
Table 5 Binary interaction parameters of Wilson equation
i | j | bij | bji |
---|---|---|---|
O2 | CO | 16.9052 | -17.2747 |
O2 | CO2 | 76.4046 | -182.302 |
O2 | D2O | 60.9711 | -130.462 |
O2 | CH4 | 54.3353 | -47.5285 |
O2 | N2 | 3.24432 | -2.38266 |
CO | CO2 | 85.053 | -190.634 |
CO | D2O | 70.63 | -137.331 |
CO | CH4 | 68.8156 | -61.7226 |
CO | N2 | 21.9528 | -20.733 |
CO2 | D2O | -289.273 | -209.6 |
CO2 | CH4 | -44.0607 | -14.5141 |
CO2 | N2 | -130.213 | 46.8441 |
D2O | CH4 | -2018.99 | -538.555 |
D2O | N2 | -109.55 | 4.10097 |
CH4 | N2 | -42.726 | 45.0976 |
原料N2含量 (体积分数)×106 | 产品N2含量(体积分数)×106 | ||
---|---|---|---|
1块 | 2块 | 3块 | |
200 | 1.86 | 0.0504 | 9.35×10-4 |
100 | 0.93 | 0.025 | 4.67×10-4 |
50 | 0.47 | 0.013 | 2.34×10-4 |
20 | 0.19 | 5.04×10-3 | 9.35×10-5 |
5 | 0.047 | 1.26×10-9 | 2.34×10-5 |
表6 气提塔去除N2的模拟结果
Table 6 Simulation results of N2 removal by a stripping column
原料N2含量 (体积分数)×106 | 产品N2含量(体积分数)×106 | ||
---|---|---|---|
1块 | 2块 | 3块 | |
200 | 1.86 | 0.0504 | 9.35×10-4 |
100 | 0.93 | 0.025 | 4.67×10-4 |
50 | 0.47 | 0.013 | 2.34×10-4 |
20 | 0.19 | 5.04×10-3 | 9.35×10-5 |
5 | 0.047 | 1.26×10-9 | 2.34×10-5 |
原料CO2含量 (体积分数)×106 | 产品CO2含量(体积分数)×106 | ||
---|---|---|---|
1块 | 2块 | 3块 | |
100 | 7.27 | 0.84 | 0.084 |
50 | 3.64 | 0.42 | 0.042 |
20 | 1.46 | 0.17 | 0.017 |
5 | 0.37 | 0.042 | 4.22×10-9 |
表7 气提塔去除CO2的模拟结果
Table 7 Simulation results of CO2 removal by a stripping column
原料CO2含量 (体积分数)×106 | 产品CO2含量(体积分数)×106 | ||
---|---|---|---|
1块 | 2块 | 3块 | |
100 | 7.27 | 0.84 | 0.084 |
50 | 3.64 | 0.42 | 0.042 |
20 | 1.46 | 0.17 | 0.017 |
5 | 0.37 | 0.042 | 4.22×10-9 |
序号 | 静态饱和吸附量/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
1 | 25.53 | 25.26 | 24.12 | 31.20 |
2 | 25.47 | 25.34 | 24.15 | 30.92 |
3 | 25.32 | 25.42 | 23.96 | 31.12 |
平均值 | 25.44 | 25.34 | 24.08 | 31.08 |
表8 不同分子筛的静态饱和吸附量
Table 8 Static saturation adsorption capacities of different molecular sieves
序号 | 静态饱和吸附量/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
1 | 25.53 | 25.26 | 24.12 | 31.20 |
2 | 25.47 | 25.34 | 24.15 | 30.92 |
3 | 25.32 | 25.42 | 23.96 | 31.12 |
平均值 | 25.44 | 25.34 | 24.08 | 31.08 |
分子筛种类 | 动态吸附量/% |
---|---|
3A | 8.21 |
4A | 7.30 |
5A | 6.24 |
13X | 11.02 |
表9 不同分子筛的动态饱和吸附量
Table 9 Dynamic saturation adsorption capacities of different molecular sieves
分子筛种类 | 动态吸附量/% |
---|---|
3A | 8.21 |
4A | 7.30 |
5A | 6.24 |
13X | 11.02 |
再生温度/℃ | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
150 | 94.39 | 93.24 | 93.10 | 92.52 |
200 | 97.85 | 96.61 | 96.50 | 95.83 |
250 | 98.59 | 97.87 | 97.50 | 96.50 |
280 | 98.63 | 98.10 | 97.53 | 96.58 |
300 | 98.69 | 98.16 | 97.55 | 96.60 |
表10 吹扫再生后不同再生温度下的脱附率
Table 10 Desorption rates at different regeneration temperatures after purge regeneration
再生温度/℃ | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
150 | 94.39 | 93.24 | 93.10 | 92.52 |
200 | 97.85 | 96.61 | 96.50 | 95.83 |
250 | 98.59 | 97.87 | 97.50 | 96.50 |
280 | 98.63 | 98.10 | 97.53 | 96.58 |
300 | 98.69 | 98.16 | 97.55 | 96.60 |
再生时间/h | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
4 | 90.18 | 91.05 | 92.56 | 94.52 |
5 | 98.56 | 97.82 | 97.48 | 96.43 |
6 | 98.61 | 97.85 | 97.52 | 96.54 |
7 | 98.63 | 97.80 | 97.56 | 96.58 |
8 | 98.62 | 97.84 | 97.55 | 96.57 |
9 | 98.63 | 97.84 | 97.57 | 96.56 |
表11 吹扫再生后不同再生时间下的脱附率
Table 11 Desorption rates at different regeneration times after purge regeneration
再生时间/h | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
4 | 90.18 | 91.05 | 92.56 | 94.52 |
5 | 98.56 | 97.82 | 97.48 | 96.43 |
6 | 98.61 | 97.85 | 97.52 | 96.54 |
7 | 98.63 | 97.80 | 97.56 | 96.58 |
8 | 98.62 | 97.84 | 97.55 | 96.57 |
9 | 98.63 | 97.84 | 97.57 | 96.56 |
再生温度/℃ | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
150 | 96.28 | 96.24 | 96.10 | 96.52 |
200 | 98.36 | 98.61 | 98.50 | 98.83 |
250 | 99.65 | 99.52 | 99.50 | 99.57 |
280 | 99.63 | 99.43 | 99.53 | 99.58 |
300 | 99.65 | 99.45 | 99.55 | 99.60 |
表12 真空再生后不同温度下的脱附率
Table 12 Desorption rates at different temperatures after vacuum regeneration
再生温度/℃ | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
150 | 96.28 | 96.24 | 96.10 | 96.52 |
200 | 98.36 | 98.61 | 98.50 | 98.83 |
250 | 99.65 | 99.52 | 99.50 | 99.57 |
280 | 99.63 | 99.43 | 99.53 | 99.58 |
300 | 99.65 | 99.45 | 99.55 | 99.60 |
再生时间/h | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
4 | 87.63 | 85.87 | 87.13 | 88.29 |
5 | 95.32 | 94.73 | 96.26 | 97.45 |
6 | 98.97 | 99.10 | 98.95 | 99.03 |
7 | 99.62 | 99.48 | 99.52 | 99.58 |
8 | 99.62 | 99.45 | 99.55 | 99.60 |
9 | 99.64 | 99.46 | 99.53 | 99.59 |
表13 真空再生时不同再生时间下的脱附率
Table 13 Desorption rates at different regeneration times during vacuum regeneration
再生时间/h | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
4 | 87.63 | 85.87 | 87.13 | 88.29 |
5 | 95.32 | 94.73 | 96.26 | 97.45 |
6 | 98.97 | 99.10 | 98.95 | 99.03 |
7 | 99.62 | 99.48 | 99.52 | 99.58 |
8 | 99.62 | 99.45 | 99.55 | 99.60 |
9 | 99.64 | 99.46 | 99.53 | 99.59 |
分子筛种类 | 回收率/% |
---|---|
3A | 99.9847 |
4A | 99.9828 |
5A | 99.9804 |
13X | 99.9885 |
表14 不同分子筛在各自最优条件下的氘气回收率
Table 14 The recovery rates of D2 under respective optimal conditions for different molecular sieves
分子筛种类 | 回收率/% |
---|---|
3A | 99.9847 |
4A | 99.9828 |
5A | 99.9804 |
13X | 99.9885 |
技术指标 | 要求 | 本文工艺方案所得氘气 |
---|---|---|
化学纯度/%(体积分数) | 99.9999 | 99.9999 |
丰度/% | 99.8 | 99.8 |
O2(体积分数) | 0.2×10-6 | 0.03×10-6 |
N2(体积分数) | 0.2×10-6 | ≤0.01×10-6 |
CO2(体积分数) | 0.1×10-6 | ≤0.01×10-6 |
CO(体积分数) | 0.1×10-6 | ≤0.01×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 | 0.02×10-6 |
水分(体积分数) | 0.2×10-6 | 0.16×10-6 |
表15 本文工艺所得6N氘气技术指标
Table 15 Technical specifications for 6N deuterium gas prepared by the as-proposed process
技术指标 | 要求 | 本文工艺方案所得氘气 |
---|---|---|
化学纯度/%(体积分数) | 99.9999 | 99.9999 |
丰度/% | 99.8 | 99.8 |
O2(体积分数) | 0.2×10-6 | 0.03×10-6 |
N2(体积分数) | 0.2×10-6 | ≤0.01×10-6 |
CO2(体积分数) | 0.1×10-6 | ≤0.01×10-6 |
CO(体积分数) | 0.1×10-6 | ≤0.01×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 | 0.02×10-6 |
水分(体积分数) | 0.2×10-6 | 0.16×10-6 |
1 | Ramachandran P V, Reddy G V. Preparative-scale one-pot syntheses of hexafluoro-1, 3-butadiene[J]. Journal of Fluorine Chemistry, 2008, 129(5): 443-446. |
2 | Nicoletti A, Srinivasan P, Riva M, et al. C4F6-1,3 hexafluorobutadiene—a new etching gas: studies on material compatibility, behavior in inductively coupled plasma and etch processes performance[C]//16th International Symposium on Plasma Chemistry. Taormina, Italy: Wiley, 2003. |
3 | Choi R, Onishi K, Kang C S, et al. Effects of deuterium anneal on MOSFETs with HfO2 gate dielectrics[J]. IEEE Electron Device Letters, 2003, 24(3): 144-146. |
4 | Iwai Y, Yamanishi T, O'Hira S, et al. H-D-T cryogenic distillation experiments at TPL/JAERI in support of ITER[J]. Fusion Engineering and Design, 2002, 61/62: 553-560. |
5 | Arrathoon R. Process for the production of high purity deuterium: US4054496[P]. 1977-10-18. |
6 | 罗祎青, 袁希钢, 刘春江. 氢同位素的低温精馏分离及模拟技术[J]. 化学工程, 2004, 32(5): 10-14, 24. |
Luo Y Q, Yuan X G, Liu C J. Hydrogen isotope separation and simulation technology with cryogenic distillation system[J]. Chemical Engineering (China), 2004, 32(5): 10-14, 24. | |
7 | Bainbridge N, Bell A C, Brennan P D, et al. Operational experience with the JET AGHS cryodistillation system during and after DTE1[J]. Fusion Engineering and Design, 1999, 47(2/3): 321-332. |
8 | Ivanchuk O M, Goryanina V G, Rozenkevich M B. Isotopic effects of hydrogen during the decomposition of water in electrolysis with a solid polymer electrolyte[J]. Atomic Energy, 2000, 89(3): 745-749. |
9 | Suntivich J, May K J, Gasteiger H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385. |
10 | Liu P, Chen B, Liang C, et al. Tip-enhanced electric field: a new mechanism promoting mass transfer in oxygen evolution reactions[J]. Advanced Materials, 2021, 33(9): 2007377. |
11 | Kang W, Wei R, Yin H, et al. Unraveling sequential oxidation kinetics and determining roles of multi-cobalt active sites on Co3O4 catalyst for water oxidation[J]. Journal of the American Chemical Society, 2023, 145(6): 3470-3477. |
12 | Seitz L C, Dickens C F, Nishio K, et al. A highly active and stable IrO x /SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014. |
13 | Saitou T C, Sugiyama K. Hydrogen purification with metal hydride sintered pellets using pressure swing adsorption method[J]. Journal of Alloys and Compounds, 1995, 231(1/2): 865-870. |
14 | Lin Y W, Cheng T W, Lo K W, et al. Synthesis and characterization of a mesoporous Al-MCM-41 molecular sieve material and its moisture regulation performance in water molecule adsorption/desorption[J]. Microporous and Mesoporous Materials, 2021, 310: 110643. |
15 | 陈诵英, 彭少逸, 杨学仁. 钯/碳纤维脱氧催化剂高效性原因的初步考察[J]. 化工学报, 1988, 39(6): 723-729. |
Chen S Y, Peng S Y, Yang X R. Causes for the high performance of Pd-carbon fiber deoxygenation catalyst[J]. Journal of Chemical Industry and Engineering (China), 1988, 39(6): 723-729. | |
16 | Kim J, Jung T, Cho D W, et al. Comprehensive evaluation of 3A, 4A, 5A, and 13X zeolites for selective 1-octene adsorption over n-octane[J]. Journal of Industrial and Engineering Chemistry, 2022, 110: 274-285. |
17 | Li J T, Zheng K T, Zhang C, et al. Cl modulation on boron-rich carbon embedded with NiFe alloys for efficient oxygen evolution reaction[J]. Chemical Engineering Journal, 2023, 462: 142267. |
18 | Zhao M, Li H L, Yuan W Y, et al. Tannic acid-mediated in situ controlled assembly of NiFe alloy nanoparticles on pristine graphene as a superior oxygen evolution catalyst[J]. ACS Applied Energy Materials, 2020, 3(4): 3966-3977. |
19 | Du X, Huang J, Zhang J, et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting[J]. Angewandte Chemie International Edition, 2019, 58(14): 4484-4502. |
20 | Batchelor-McAuley C. Defining the onset potential[J]. Current Opinion in Electrochemistry, 2023, 37: 101176. |
21 | She S X, Zhu Y L, Chen Y B, et al. Perovskites: realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites[J]. Advanced Energy Materials, 2019, 9(20): 1900429. |
22 | Suen N T, Hung S F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. |
23 | Eshghi A, Kheirmand M. Graphene/Ni-Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15064-15072. |
24 | Jakub W, Jakub K, Emerson C, et al. Spectacular oxygen evolution reaction enhancement through laser processing of the nickel-decorated titania nanotubes[J]. Advanced Materials Interfaces, 2021, 8(18): 2001420. |
25 | Park C E, Senthil R A, Jeong G H, et al. Architecting the high-entropy oxides on 2D MXene nanosheets by rapid microwave-heating strategy with robust photoelectrochemical oxygen evolution performance[J]. Small, 2023, 19(27): e2207820. |
26 | Bhattarai R M, Chhetri K, Le N, et al. Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion[J]. Carbon Energy, DOI: 10.1002/cey2.392 . |
27 | Ren H J, Pan Y, Sorrell C C, et al. Assessment of electrocatalytic activity through the lens of three surface area normalization techniques[J]. Journal of Materials Chemistry A, 2020, 8(6): 3154-3159. |
28 | Kim Y J, Lim A, Kim J M, et al. Highly efficient oxygen evolution reaction via facile bubble transport realized by three-dimensionally stack-printed catalysts[J]. Nature Communications, 2020, 11: 4921. |
29 | Anantharaj S, Ede S R, Karthick K, et al. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment[J]. Energy & Environmental Science, 2018, 11(4): 744-771. |
30 | Atanu R, Apurba R, Samik S, et al. Influence of electrochemical active surface area on the oxygen evolution reaction and energy storage performance of MnO2-multiwalled carbon nanotube composite[J]. International Journal of Energy Research, 2021, 45(11): 16908-16921. |
31 | Gabruś E, Nastaj J, Tabero P, et al. Experimental studies on 3A and 4A zeolite molecular sieves regeneration in TSA process: aliphatic alcohols dewatering-water desorption[J]. Chemical Engineering Journal, 2015, 259: 232-242. |
32 | Ribeiro R P P L, Grande C A, Rodrigues A E. Adsorption of water vapor on carbon molecular sieve: thermal and electrothermal regeneration study[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2144-2156. |
[1] | 闻文, 王慧艳, 周静红, 曹约强, 周兴贵. 石墨负极颗粒对锂离子电池容量衰减及SEI膜生长影响的模拟研究[J]. 化工学报, 2024, 75(1): 366-376. |
[2] | 张强, 王宪飞, 王凯, 骆广生, 路忠凯. 非金属催化剂在环氧化物和环状酸酐共聚中的研究进展[J]. 化工学报, 2024, 75(1): 60-73. |
[3] | 王欣雨, 王永涛, 姚加, 李浩然. 电子顺磁共振技术在化工基础研究中的应用进展[J]. 化工学报, 2024, 75(1): 74-82. |
[4] | 余留洋, 刘书博, 贾晟哲, 马航, 万邦隆, 苏琦雯, 王静康, 汤伟伟, 贺豫娟, 龚俊波. 电子级磷酸的纯化精制技术发展现状与研究进展[J]. 化工学报, 2024, 75(1): 1-19. |
[5] | 闫可欣, 姜洪涛, 高维群, 郭晓晖, 孙伟振, 赵玲. 电子级多晶硅原料中痕量硼磷杂质的脱除研究进展[J]. 化工学报, 2024, 75(1): 83-94. |
[6] | 刘琦, 陈子康, 朴宇, 肖鹏, 葛亚粉, 巩雁军. 烃类催化裂解高选择性制低碳烯烃的分子筛催化剂[J]. 化工学报, 2024, 75(1): 120-137. |
[7] | 齐元帅, 彭文朝, 李阳, 张凤宝, 范晓彬. 电化学脱盐机理及相关研究进展[J]. 化工学报, 2024, 75(1): 171-189. |
[8] | 王婷, 王忠东, 项星宇, 何呈祥, 朱春英, 马友光, 付涛涛. 微反应器内环酯类锂电池添加剂合成研究进展[J]. 化工学报, 2024, 75(1): 95-109. |
[9] | 郑雨婷, 方冠东, 张梦波, 张浩淼, 王靖岱, 阳永荣. 微化工精馏分离技术研究进展[J]. 化工学报, 2024, 75(1): 47-59. |
[10] | 朱娇, 栾丽萍, 从深震, 刘新磊. 氢气分离有机膜[J]. 化工学报, 2024, 75(1): 138-158. |
[11] | 王尤佳, 赵亮, 高金森, 徐春明. 柴油烃类族组成分离技术研究进展[J]. 化工学报, 2024, 75(1): 20-32. |
[12] | 尹刚, 钱中友, 曹文琦, 全鹏程, 许亨权, 颜非亚, 王民, 向禹, 向冬梅, 卢剑, 左玉海, 何文, 卢润廷. 基于Adaboost-PSO-SVM的铝电解槽健康状态诊断方法研究[J]. 化工学报, 2024, 75(1): 354-365. |
[13] | 咸国义, 陈立芳, 漆志文. 基于DFT的环己酮肟液相贝克曼重排机理研究[J]. 化工学报, 2024, 75(1): 302-311. |
[14] | 王雪杰, 崔国庆, 王文涵, 杨扬, 王淙恺, 姜桂元, 徐春明. 电内加热Pt/NPC催化剂高效催化甲基环己烷脱氢反应研究[J]. 化工学报, 2024, 75(1): 292-301. |
[15] | 张家琳, 徐大为, 高越, 李新刚. 泡沫镍负载CeO2改性CuO催化剂的碳烟燃烧性能研究[J]. 化工学报, 2024, 75(1): 312-321. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 904
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 357
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||