化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2917-2928.DOI: 10.11949/0438-1157.20240227

• 能源和环境工程 • 上一篇    下一篇

高密度碳氢燃料JP-10流动换热及热裂解结焦实验研究

黄晓峰(), 刘朝晖(), 杨帆   

  1. 西安交通大学动力工程多相流国家重点实验室,陕西 西安 710049
  • 收稿日期:2024-03-01 修回日期:2024-06-27 出版日期:2024-08-25 发布日期:2024-08-21
  • 通讯作者: 刘朝晖
  • 作者简介:黄晓峰(1999—),男,硕士研究生,543931339@qq.com

Experimental investigation of high-density hydrocarbon fuel JP-10 on flow heat transfer and pyrolysis characteristics

Xiaofeng HUANG(), Zhaohui LIU(), Fan YANG   

  1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2024-03-01 Revised:2024-06-27 Online:2024-08-25 Published:2024-08-21
  • Contact: Zhaohui LIU

摘要:

基于再生冷却技术研究背景,在热通量100~2000 kW/m2、常压~6 MPa条件下,于Ф4 mm×1 mm高温合金钢圆管内开展了高密度吸热型碳氢燃料JP-10的流动换热特性和热裂解结焦特性实验研究。研究表明,压力2 MPa下,1204.6 kW/m2是煤油发生偏离核态沸腾的临界热通量。亚/超临界压力下JP-10部分流动换热区域可划分如下:入口效应区、强制对流换热区、(拟)过冷沸腾区、(拟)饱和沸腾区等。流体温度是主导燃料结焦的主要因素。压力2、4、6 MPa下,燃料结焦起始点流体温度分别为679、652、643℃。壁面温度在高结焦反应发生后对结焦量产生同步影响。压力升高,燃料管内结焦加剧,高温燃料在管道内停留时间增加是主要原因。

关键词: 再生冷却, 碳氢燃料, 流动换热, 结焦, 停留时间

Abstract:

Based on the background of development in regenerative cooling technology, the flow heat transfer characteristics and thermal cracking coking characteristics of high-density endothermic hydrocarbon fuel JP-10 were experimentally studied in a Φ4 mm×1 mm high-temperature alloy steel round tube under the conditions of heat flux density of 100—2000 kW/m2 and normal pressure to 6 MPa. The results of the experiments indicate that under 2 MPa pressure, 1204.6 kW/m2 is the critical heat flux density for the deterioration of kerosene heat transfer. The experiments have delineated the heat transfer regions of kerosene under subcritical/supercritical pressures: entrance region, forced convection heat transfer region, (pseudo) subcooling boiling region, (pseudo) saturated boiling region, etc. It was observed that fluid temperature primarily governs fuel coking, with the onset of coking occurring at 679℃, 652℃, and 643℃ under pressures of 2,4, and 6 MPa, respectively. The wall temperature synchronously affects coking quantity after high coking reactions occur. The main reason is that the coking in the fuel pipe intensifies with the increase in pressure, and the residence time of the high-temperature fuel in the pipeline increases.

Key words: regenerative cooling, hydrocarbon fuel, flow heat transfer, coking, residence time

中图分类号: