化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3623-3638.DOI: 10.11949/0438-1157.20240259
王龙龙1,2(), 秦志峰1,2(
), 班红艳1,2, 李乃珍1,2, 杜朕屹1,2, 于峰2, 翟志强3, 吴琼笑4
收稿日期:
2024-03-04
修回日期:
2024-06-18
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
秦志峰
作者简介:
王龙龙(1999—),男,硕士研究生, 15383414720@163.com
基金资助:
Longlong WANG1,2(), Zhifeng QIN1,2(
), Hongyan BAN1,2, Naizhen LI1,2, Zhenyi DU1,2, Feng YU2, Zhiqiang ZHAI3, Qiongxiao WU4
Received:
2024-03-04
Revised:
2024-06-18
Online:
2024-10-25
Published:
2024-11-04
Contact:
Zhifeng QIN
摘要:
探讨了Al2O3载体孔结构对FeMo/Al2O3预加氢脱硫(HDS)催化剂活性和选择性的影响,采用浸渍法制备了一系列具有不同孔结构的FeMo/Al2O3催化剂,并通过微型固定床技术对其在模拟焦炉煤气中COS、CS2、C4H4S和C2H4的HDS活性和选择性进行了系统评价,通过N2吸附-脱附、红外碳硫、XRD、NH3-TPD、H2-TPR、XPS、Raman以及HRTEM等技术对催化剂进行了表征。研究结果表明,Al2O3载体孔结构对催化剂活性相MoS2有显著影响,从而影响加氢脱硫活性和选择性,其中较大孔径的载体更有利于COS和CS2的有效转化,而较小孔径的载体则更倾向于促进C4H4S和C2H4的转化;此外,具有较大孔径的催化剂不仅展现出更低的积炭倾向,还通过提高Mo物种的分散性,有效调控了MoS2片晶的生长尺寸和层数,从而在COS和CS2的加氢脱硫活性上显示了优异性能。研究结果为高效HDS催化剂的设计与开发开辟了新途径。
中图分类号:
王龙龙, 秦志峰, 班红艳, 李乃珍, 杜朕屹, 于峰, 翟志强, 吴琼笑. Al2O3载体孔结构优化:提升FeMo/Al2O3催化剂在焦炉煤气加氢脱硫性能[J]. 化工学报, 2024, 75(10): 3623-3638.
Longlong WANG, Zhifeng QIN, Hongyan BAN, Naizhen LI, Zhenyi DU, Feng YU, Zhiqiang ZHAI, Qiongxiao WU. Optimization of Al2O3 support pore structure: enhancing the hydrodesulfurization performance of FeMo/Al2O3 catalyst in coke oven gas[J]. CIESC Journal, 2024, 75(10): 3623-3638.
样品 | 孔体积/ (cm3·g-1) | 比表面积/ (m2·g-1) | 平均孔径/nm | 吸水率/ (ml·g-1) |
---|---|---|---|---|
a-Al2O3载体 | 0.86 | 246.4 | 12.4 | 129.41 |
b-Al2O3载体 | 0.78 | 285.8 | 10.2 | 148.91 |
c-Al2O3载体 | 0.65 | 263.2 | 9.6 | 107.53 |
d-Al2O3载体 | 0.62 | 214.2 | 8.8 | 116.30 |
e-Al2O3载体 | 0.49 | 254.7 | 8.2 | 70.33 |
表1 Al2O3载体孔结构参数和吸水率
Table 1 Pore structure parameters and water absorption of the Al2O3 supports
样品 | 孔体积/ (cm3·g-1) | 比表面积/ (m2·g-1) | 平均孔径/nm | 吸水率/ (ml·g-1) |
---|---|---|---|---|
a-Al2O3载体 | 0.86 | 246.4 | 12.4 | 129.41 |
b-Al2O3载体 | 0.78 | 285.8 | 10.2 | 148.91 |
c-Al2O3载体 | 0.65 | 263.2 | 9.6 | 107.53 |
d-Al2O3载体 | 0.62 | 214.2 | 8.8 | 116.30 |
e-Al2O3载体 | 0.49 | 254.7 | 8.2 | 70.33 |
气体 | 纯度或含量 | 平衡气体 |
---|---|---|
乙烯 | 99.9% | |
氮气 | 99.99% | |
预硫化气体 | H2S 3% | H2 |
含硫反应气体 | COS 170.86 mg·m-3、CS2 130.53 mg·m-3、 C4H4S 18.45 mg·m-3 | H2 |
硫化物标气 | H2S 204.95 mg·m-3、COS 222.22 mg·m-3、CH3SH 142.07 mg·m-3、C2H5SH 140.91 mg·m-3、CH3SCH3 146.19 mg·m-3、CS2 224.54 mg·m-3、C4H4S 210.93 mg·m-3、CH3S2CH3 212.46 mg·m-3、C2H5SCH3 209.91 mg·m-3、(C2H5)S 209.42 mg·m-3 | N2 |
表2 实验所用气体组分和纯度
Table 2 Test gas composition and concentration
气体 | 纯度或含量 | 平衡气体 |
---|---|---|
乙烯 | 99.9% | |
氮气 | 99.99% | |
预硫化气体 | H2S 3% | H2 |
含硫反应气体 | COS 170.86 mg·m-3、CS2 130.53 mg·m-3、 C4H4S 18.45 mg·m-3 | H2 |
硫化物标气 | H2S 204.95 mg·m-3、COS 222.22 mg·m-3、CH3SH 142.07 mg·m-3、C2H5SH 140.91 mg·m-3、CH3SCH3 146.19 mg·m-3、CS2 224.54 mg·m-3、C4H4S 210.93 mg·m-3、CH3S2CH3 212.46 mg·m-3、C2H5SCH3 209.91 mg·m-3、(C2H5)S 209.42 mg·m-3 | N2 |
图1 不同孔结构载体FeMo/Al2O3催化剂HDS活性[反应条件:压力1.0 MPa,空速5400 h-1(含硫反应气体与C2H4体积比为5∶1)]a-FeMo/a-Al2O3; b-FeMo/b-Al2O3; c-FeMo/c-Al2O3; d-FeMo/d-Al2O3; e-FeMo/e-Al2O3
Fig.1 HDS performance of FeMo/Al2O3 catalysts of different support pore structures
图2 不同孔结构载体FeMo/Al2O3催化剂加氢产物分布[反应条件:压力1.0 MPa,空速5400 h-1(含硫反应气体与C2H4体积比为5∶1)]
Fig.2 HDS reaction product composition of FeMo/Al2O3 catalyst at different support pore structures
催化剂样品 | 比表面积/(m2·g-1) | 孔体积/(cm3·g-1) | 平均孔径/nm | 碳含量/%(质量分数) | 硫含量/%(质量分数) | |
---|---|---|---|---|---|---|
FeMo/a-Al2O3 | 新鲜催化剂 | 226.3 | 0.82 | 13.1 | 0.03 | 0.36 |
反应后催化剂 | 210.6 | 0.81 | 13.6 | 0.37 | 3.41 | |
FeMo/b-Al2O3 | 新鲜催化剂 | 276.1 | 0.72 | 10.7 | 0.03 | 0.20 |
反应后催化剂 | 227.2 | 0.65 | 11.1 | 0.48 | 3.08 | |
FeMo/c-Al2O3 | 新鲜催化剂 | 218.6 | 0.61 | 10.3 | 0.03 | 0.21 |
反应后催化剂 | 200.9 | 0.59 | 10.7 | 1.07 | 3.37 | |
FeMo/d-Al2O3 | 新鲜催化剂 | 207.4 | 0.60 | 10.2 | 0.04 | 0.23 |
反应后催化剂 | 170.2 | 0.56 | 10.8 | 1.04 | 3.46 | |
FeMo/e-Al2O3 | 新鲜催化剂 | 221.8 | 0.45 | 8.6 | 0.02 | 0.21 |
反应后催化剂 | 194.3 | 0.41 | 8.9 | 1.06 | 2.87 |
表3 FeMo/Al2O3催化剂反应前后物理性能
Table 3 Textural properties of the FeMo/Al2O3 catalysts before and after reaction
催化剂样品 | 比表面积/(m2·g-1) | 孔体积/(cm3·g-1) | 平均孔径/nm | 碳含量/%(质量分数) | 硫含量/%(质量分数) | |
---|---|---|---|---|---|---|
FeMo/a-Al2O3 | 新鲜催化剂 | 226.3 | 0.82 | 13.1 | 0.03 | 0.36 |
反应后催化剂 | 210.6 | 0.81 | 13.6 | 0.37 | 3.41 | |
FeMo/b-Al2O3 | 新鲜催化剂 | 276.1 | 0.72 | 10.7 | 0.03 | 0.20 |
反应后催化剂 | 227.2 | 0.65 | 11.1 | 0.48 | 3.08 | |
FeMo/c-Al2O3 | 新鲜催化剂 | 218.6 | 0.61 | 10.3 | 0.03 | 0.21 |
反应后催化剂 | 200.9 | 0.59 | 10.7 | 1.07 | 3.37 | |
FeMo/d-Al2O3 | 新鲜催化剂 | 207.4 | 0.60 | 10.2 | 0.04 | 0.23 |
反应后催化剂 | 170.2 | 0.56 | 10.8 | 1.04 | 3.46 | |
FeMo/e-Al2O3 | 新鲜催化剂 | 221.8 | 0.45 | 8.6 | 0.02 | 0.21 |
反应后催化剂 | 194.3 | 0.41 | 8.9 | 1.06 | 2.87 |
催化剂 | Mo4+/%① | Mo5+/%① | Mo6+/%① | SMo② | |||
---|---|---|---|---|---|---|---|
229.0 eV | 232.2 eV | 230.5 eV | 233.6 eV | 233.5 eV | 236.2 eV | ||
FeMo/a-Al2O3 | 29 | 25 | 8 | 1 | 21 | 17 | 54 |
FeMo/b-Al2O3 | 21 | 25 | 7 | 6 | 20 | 21 | 46 |
FeMo/c-Al2O3 | 15 | 28 | 4 | 6 | 20 | 17 | 43 |
FeMo/d-Al2O3 | 15 | 27 | 14 | 4 | 19 | 22 | 42 |
FeMo/e-Al2O3 | 20 | 19 | 7 | 3 | 30 | 21 | 40 |
表4 反应后催化剂XPS表面元素含量
Table 4 Surface compositions of used catalysts calculated from XPS spectra for Mo and S elements
催化剂 | Mo4+/%① | Mo5+/%① | Mo6+/%① | SMo② | |||
---|---|---|---|---|---|---|---|
229.0 eV | 232.2 eV | 230.5 eV | 233.6 eV | 233.5 eV | 236.2 eV | ||
FeMo/a-Al2O3 | 29 | 25 | 8 | 1 | 21 | 17 | 54 |
FeMo/b-Al2O3 | 21 | 25 | 7 | 6 | 20 | 21 | 46 |
FeMo/c-Al2O3 | 15 | 28 | 4 | 6 | 20 | 17 | 43 |
FeMo/d-Al2O3 | 15 | 27 | 14 | 4 | 19 | 22 | 42 |
FeMo/e-Al2O3 | 20 | 19 | 7 | 3 | 30 | 21 | 40 |
催化剂 | 平均堆叠层数 | 平均片晶长度/nm |
---|---|---|
FeMo/a-Al2O3 | 2.56 | 4.52 |
FeMo/b-Al2O3 | 2.75 | 4.72 |
FeMo/c-Al2O3 | 3.31 | 8.56 |
FeMo/d-Al2O3 | 5.25 | 9.4 |
FeMo/e-Al2O3 | 8.28 | 10.88 |
表5 反应后催化剂TEM统计结果
Table 5 TEM statistical results of the used catalysts
催化剂 | 平均堆叠层数 | 平均片晶长度/nm |
---|---|---|
FeMo/a-Al2O3 | 2.56 | 4.52 |
FeMo/b-Al2O3 | 2.75 | 4.72 |
FeMo/c-Al2O3 | 3.31 | 8.56 |
FeMo/d-Al2O3 | 5.25 | 9.4 |
FeMo/e-Al2O3 | 8.28 | 10.88 |
1 | Moral G, Ortiz-imedio R, Oritz A, et al. Hydrogen recovery from coke oven gas comparative analysis of technical altematives[J]. Industrial & Engineering Chemistry Research, 2022, 61(18): 6106-6124. |
2 | Zhou J B, Guo Y J, Huang Z W, et al. A review and prospects of gas mixture containing hydrogen as vehicle fuel in China[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29776-29784. |
3 | Razzaq R, Li C S, Zhanf S J. Coke oven gas: availability, properties, purification, and utilization in China[J]. Fuel, 2013, 113: 287-299. |
4 | Qu Y X, Xu H M, Zhao J F, et al. Conversion and reaction kinetics of coke oven gas over a commercial Fe-Mo/Al2O3 catalyst[J]. Journal of Central South University, 2016, 23(2): 293-302. |
5 | Al-Degs Y S, El-Sheikh A H, Al Bakain R Z, et al. Conventional and upcoming sulfur-cleaning technologies for petroleum fuel: a review[J]. Energy Technology: Generation,Conversion,Storage,Distribution, 2016, 4(6): 679-699. |
6 | Weng X Y, Cao L Y, Zhang G H, et al. Ultradeep hydrodesulfurization of diesel: mechanisms, catalyst design strategies, and challenges[J].Industrial & Engineering Chemistry Research, 2020, 59(49): 21261-21274. |
7 | Shafiq I, Shafique S, Akhter P,et al. Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: a technical review[J].Catalysis Reviews, 2022, 64(1): 1-86. |
8 | 王艾荣, 虎骁, 史军伟, 等. 焦炉煤气催化加氢转化精脱硫工艺及生产实践[J]. 煤化工, 2016, 44(6): 42-44. |
Wang A R, Hu X, Shi J W, et al. Catalytic hydrogenation conversion fine desulfurization process of coke oven gas and its production practice[J]. Coal Chemical Industry, 2016, 44(6): 42-44. | |
9 | 郭玉峰, 蒋晓娟. 焦炉气净化中的有机硫加氢工艺应用技术[J]. 山西化工, 2017, 37(3): 52-55. |
Guo Y F, Jiang X J. Application technology of organic sulfur hydrogenation process in purification of coke oven gas[J]. Shanxi Chemical Industry, 2017, 37(3): 52-55. | |
10 | 汪佩华, 秦志峰, 吴琼笑, 等. 磷添加方式对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展, 2021, 40(2): 890-900. |
Wang P H, Qin Z F, Wu Q X, et al. Effect of phosphorus adding manners on the performance of NiMo/Al2O3 catalyst in hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 890-900. | |
11 | 裴学国, 亓栋, 丁卉, 等. T202型催化剂在焦炉气二级加氢脱硫工艺中的应用[J]. 化肥设计, 2011, 49(5): 48-51. |
Pei X G, Qi D, Ding H, et al. Application for T202 type catalyst in hydrogenation desulphurization process of coking-oven gas in 2 stages[J]. Chemical Fertilizer Design, 2011, 49(5): 48-51. | |
12 | 王贵. 焦炉煤气脱硫技术进展与分析[J]. 煤化工, 2021, 49(4): 57-61. |
Wang G. Development and analysis of desulfurization technology of coke oven gas[J]. Coal Chemical Industry, 2021, 49(4): 57-61. | |
13 | 朱军利, 张林生, 盛明泽, 等. JT-8型焦炉煤气加氢催化剂失活样品剖析[J]. 工业催化, 2020, 28(9): 45-50. |
Zhu J L, Zhang L S, Sheng M Z, et al. Analysis of deactivated hydrogenation catalyst JT-8[J]. Industrial Catalysis, 2020, 28(9): 45-50. | |
14 | 杨宝刚, 黄成忠, 朱军利. JT-8型加氢催化剂在焦炉煤气制甲醇装置上的工业应用[J]. 工业催化, 2014, 22(8): 628-631. |
Yang B G, Huang C Z, Zhu J L. Commercial application of JT-8 hydrogenation catalyst in the plant of methanol synthesized from coke oven gas[J]. Industrial Catalysis, 2014, 22(8): 628-631. | |
15 | Kraleva E, Spojakina A, Jiratova K, et al. Support effect on the properties of iron-molybdenum hydrodesulfurization catalysts[J]. Catalysis Letters, 2006, 112(3): 203-212. |
16 | Puello-Polo E, Brito J L. Effect of the type of precursor and the synthesis method on thiophene hydrodesulfurization activity of activated carbon supported Fe-Mo, Co-Mo and Ni-Mo carbides[J].Journal of Molecular Catalysis A: Chemical, 2008, 281(1/2): 85-92. |
17 | Yin F K, Yu J L, Dou J X, et al. Sulfidation of Iron-based sorbents supported on activated chars during the desulfurization of coke oven gases: effects of Mo and Ce addition[J]. Energy & Fuels, 2014, 28(4): 2481-2489. |
18 | 韩龙年, 辛靖, 陈禹霏, 等. SEM-EDS组合手段对加氢催化剂失活的分析及应用[J].工业催化, 2023, 31(1): 56-63. |
Han L N, Xin J, Chen Y F, et al. Analysis and application for deactivation of hydrogenation catalyst by SEM-EDS combination means[J]. Industrial Catalysis, 2023, 31(1): 56-63. | |
19 | Zhang D, Liu X M, Liu Y X, et al. Impact of γ-alumina pore structure on structure and performance of Ni-Mo/γ-Al2O3 catalyst for 4,6-dimethyldibenzothiophene desulfurization[J]. Microporous and Mesoporous Materials, 2021, 310: 110637. |
20 | Chen W, Nie H, Long X, et al. Role of pore structure on the activity and stability of sulfide catalyst[J]. Catalysis Today, 2021, 377: 69-81. |
21 | Dong Y Y, Xu Y R, Zhang X Q, et al. Synthesis of hierarchically structured alumina support with adjustable nanocrystalline aggregation towards efficient hydrodesulfurization[J]. Applied Catalysis A: General, 2018, 559: 30-39. |
22 | 郭蓉, 沈本贤, 方向晨, 等. 载体孔结构对加氢脱硫催化剂催化性能的影响[J].石油学报(石油加工), 2012, 28(5): 724-729. |
Guo R, Shen B X, Fang X C, et al. Effect of support pore structure on hydrodesulfurization performance of catalyst[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(5): 724-729. | |
23 | Wang T H, Fan Y, Wang X L, et al. Selectivity enhancement of CoMoS catalysts supported on tri-modal porous Al2O3 for the hydrodesulfurization of fluid catalytic cracking gasoline[J]. Fuel, 2015, 157(1): 171-176. |
24 | Badoga S, Sharma R V, Dalai A K, et al. Synthesis and characterization of mesoporous aluminas with different pore sizes: application in NiMo supported catalyst for hydrotreating of heavy gas oil[J]. Applied Catalysis A: General, 2015, 489: 86-97. |
25 | Yuan P, Liu J X, Li Y T, et al. Effect of pore diameter and structure of mesoporous sieve supported catalysts on hydrodesulfurization performance[J].Chemical Engineering Science, 2014, 111: 381-389. |
26 | 李乃珍, 孙瑞洁, 秦志峰, 等. 焦炉煤气常量含碳气氛对加氢脱硫催化剂活性、选择性和积炭的影响[J].化工进展, 2023, 42(2): 783-793. |
Li N Z, Sun R J, Qin Z F,et al. Effects of constant carbon atmosphere on the activity, selectivity and coking of catalysts in hydrodesulfurization of coke oven gas[J]. Chemical Industry and Engineering Progress, 2023, 42(2):783-793. | |
27 | 穆福军, 隋宝宽, 刘文洁, 等. 渣油加氢处理催化剂失活研究[J]. 石油化工, 2022, 51(9): 1044-1051. |
Mu F J, Sui B K, Liu W J, et al. Study on deactivation of residue hydrotreating catalyst[J]. Petrochemical Technology, 2022, 51(9): 1044-1051. | |
28 | 李硕, 刘熠斌, 冯翔, 等. MoS2基催化剂加氢脱硫反应活性相和作用机理研究进展[J].化工进展, 2019, 38(2):867-875. |
Li S, Liu Y B, Feng X, et al. Research progress in active phase structure and reaction mechanism of MoS2-based catalysts for hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 867-875. | |
29 | Zhang D, Xue L J, Xu Y Q, et al. Adsorption of 4, 6-dimethyldibenzothiophene and collidine over MoO3/γ-Al2O3 catalysts with different pore structures[J]. Journal of Colloid and Interface Science, 2017, 493: 218-227. |
30 | Singh S B, De M. Room temperature adsorptive removal of thiophene over zinc oxide-based adsorbents[J]. Journal of Materials Engineering and Performance, 2018, 27(6): 2661-2667. |
31 | Frilund C, Simell P, Kaisalo N, et al. Desulfurization of biomass syngas using ZnO-based adsorbents: long-term hydrogen sulfide breakthrough experiments[J]. Energy & Fuels: an American Chemical Society Journal, 2020, 34(3): 3316-3325. |
32 | Buttrill S E. Ion-molecule reactions of hydrogen sulfide with ethylene and acetylene[J]. Journal of the American Chemical Society, 1970, 92(12): 3560-3564. |
33 | 袁礼, 王学谦, 李翔, 等. 催化脱除钢铁副产煤气中COS和H2S的研究进展[J]. 化工进展, 2023, 42(10): 5147-5161. |
Yuan L, Wang X Q, Li X, et al. Research advances on catalytic removal COS and H2S from by-product gas in iron and steel industry[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5147-5161. | |
34 | 张海鹰, 王旭珍, 郑军, 等. 高温煤气中羰基硫的加氢脱除研究进展[J]. 应用化工, 2008, 37(8): 943-947. |
Zhang H Y, Wang X Z, Zheng J, et al. Research progress of hydrodesulfurization of carbonyl sulfide in hot coal gas[J]. Applied Chemical Industry, 2008, 37(8): 943-947. | |
35 | 王成, 邵春宇, 姚劲, 等. 二硫化碳对Ni/Al2O3加氢催化剂中毒机理的研究[J]. 当代化工, 2019, 48(11): 2445-2448. |
Wang C, Shao C Y, Yao J, et al. Study on the mechanism of Ni/ Al2O3 catalyst poisoning caused by CS2 [J]. Contemporary Chemical Industry, 2019, 48(11): 2445-2448. | |
36 | 于沛, 柯明, 刘强,等. CoMo/γ-Al2O3选择性加氢脱硫催化剂上硫醇的生成反应[J]. 石油化工, 2016, 45(6): 691-696. |
Yu P, Ke M, Liu Q, et al. Production of mercaptan in selective hydrodesulfurization over CoMo/γ-Al2O3 catalyst[J]. Petrochemical Technology, 2016, 45(6): 691-696. | |
37 | Shi Y, Wang G, Mei J L, et al. The influence of pore structure and acidity on the hydrodesulfurization of dibenzothiophene over NiMo-supported catalysts[J].ACS Omega, 2020, 5(25):15576-15585. |
38 | 于秋莹, 王永林, 袁胜华, 等. 球形氧化铝载体结构优化[J]. 当代化工, 2024, 53(5):1086-1089. |
Yu Q Y, Wang Y L, Yuan S H, et al. Optimization of spherical alumina support structure[J]. Contemporary Chemical Industry, 2024, 53(5):1086-1089. | |
39 | 郑金玉, 罗一斌, 舒兴田. 孔结构与酸性质对多孔氧化铝材料催化性能的影响研究[J]. 石油炼制与化工, 2018, 49(12): 27-33. |
Zheng J Y, Luo Y B, Shu X T. Effect of pore structure and acidic property on catalytic properties of porous alumina materials[J]. Petroleum Processing and Petrochemicals, 2018, 49(12): 27-33. | |
40 | Guo X M, Song M N, Zhao X, et al. Effect of fluoride promoter on the catalytic activity of NiWF/γ-Al2O3 for hydrodenitrogenation and hydrodesulfurization of coal tar[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1326-1333. |
41 | Hao L, Xiong G, Liu L P, et al. Preparation of highly dispersed desulfurization catalysts and their catalytic performance in hydrodesulfurization of dibenzothiophene[J]. Chinese Journal of Catalysis, 2016, 37(3): 412-419. |
42 | Sui B K, Wang G, Yuan S H, et al. Macroporous Al2O3 with three-dimensionally interconnected structure: catalytic performance of hydrodemetallization for residue oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1201-1207. |
43 | Peng C, Guo R, Feng X, et al. Tailoring the structure of Co-Mo/mesoporous γ-Al2O3 catalysts by adding multi-hydroxyl compound: a 3000 kt/a industrial-scale diesel ultra-deep hydrodesulfurization study[J]. Chemical Engineering Journal, 2019, 377: 119706. |
44 | Liu T B, Sun P L, Zhu H H, et al. The effect of hydroxyl and metal synergetic structures on the FCC diesel hydrotreating performance of NiMo/Al2O3 catalysts[J]. Fuel, 2024, 356: 129487. |
45 | Zhang Y, Zhou K D, Zhang L F, et al. Synthesis of mesoporous γ-Al2O3 by using cellulose nanofiber as template for hydrodesulfurization of dibenzothiophene[J]. Fuel, 2019, 253: 431-440. |
46 | Song S T, Zhou X F, Duan A J, et al. Synthesis of mesoporous silica material with ultra-large pore sizes and the HDS performance of dibenzothiophene[J]. Microporous and Mesoporous Materials, 2016, 226: 510-521. |
47 | Liu B S, Jiang L, Sun H, et al. XPS, XAES, and TG/DTA characterization of deposited carbon in methane dehydroaromatization over Ga-Mo/ZSM-5 catalyst[J]. Applied Surface Science, 2007, 253(11): 5092-5100. |
48 | Montesinos-Castellanos A, Zepeda T A, Pawelec B, et al. Preparation, characterization, and performance of alumina-supported nanostructured Mo-phosphide systems[J]. Chemistry of Materials, 2007, 19(23): 5627-5636. |
49 | Jaroszewska K, Masalska A, Marek D, et al. Effect of support composition on the activity of Pt and PtMo catalysts in the conversion of n-hexadecane[J]. Catalysis Today, 2014, 223:76-86. |
50 | Wang J M, Song Z, Han M X, et al. Molybdenum-based catalysts supported on alumina for direct dehydrogenation of isobutane[J]. Molecular Catalysis, 2021, 511: 111746. |
51 | Venezia A M, La Parola V, Deganello G, et al. Influence of the preparation method on the thiophene HDS activity of silica supported CoMo catalysts[J]. Applied Catalysis A: General, 2002, 229(1/2): 261-271. |
52 | Xiao C K, Xia Z S, Chi K B, et al. Titanium-modified TUD-1 mesoporous catalysts for the hydrotreating of FCC diesel[J]. Energy & Fuels, 2018, 32(8): 8210-8219. |
53 | Wang B W, Hu Z Y, Liu S H, et al. Effect of sulphidation temperature on the performance of NiO-MoO3/γ-Al2O3 catalysts for sulphur-resistant methanation[J]. RSC Adv., 2014, 4(99): 56174-56182. |
54 | Arun N, Maley J, Chen N, et al. NiMo nitride supported on γ-Al2O3 for hydrodeoxygenation of oleic acid: novel characterization and activity study[J]. Catalysis Today, 2017, 291: 153-159. |
55 | Mestl G, Srinivasan T K K. Raman spectroscopy of monolayer-type catalysts: supported molybdenum oxides[J]. Catalysis Reviews, 1998, 40(4): 451-570. |
56 | Usman, Yamamoto T, Kubota T, et al. Effect of phosphorus addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene[J].Applied Catalysis A: General, 2007, 328(2): 219-225. |
57 | Koizumi N, Urabe Y, Inamura K, et al. Investigation of carbonaceous compounds deposited on NiMo catalyst used for ultra-deep hydrodesulfurization of gas oil by means of temperature-programmed oxidation and Raman spectroscopy[J]. Catalysis Today, 2005, 106(1/2/3/4): 211-218. |
58 | Xu Q, Jia G Q, Zhang J, et al. Surface phase composition of iron molybdate catalysts studied by UV Raman spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(25): 9387-9393. |
59 | 徐军科, 羌宁. 反应器材质对Ni-Co双金属催化剂上沼气重整制氢性能与积炭的影响[J]. 天然气化工(C1化学与化工), 2021, 46(4): 52-57, 69. |
Xu J K, Qiang N. Effect of reactor material on performance and carbon deposition of biogas reforming for hydrogen production over Ni-Co bimetallic catalyst[J]. Natural Gas Chemical Industry, 2021, 46(4): 52-57, 69. | |
60 | Said S, Abdelrahman A A. Atomic layer deposition of MoO3 on mesoporous γ-Al2O3 prepared by sol-gel method as efficient catalyst for oxidative desulfurization of refractory dibenzothiophene compound[J]. Journal of Sol-Gel Science and Technology, 2020, 95(2): 308-320. |
61 | 范峰, 凌凤香, 王少军, 等. 氧化铝表面碱性与钼金属负载研究[J]. 石油化工, 2020, 49(11):1043-1048. |
Fan F, Ling F X, Wang S J, et al. Study on surface alkalinity of alumina and molybdenum metal loading[J]. Petrochemical Technology, 2020, 49(11):1043-1048. | |
62 | Meng D J, Wang B W, Yu W X, et al. Effect of citric acid on MoO3/Al2O3 catalysts for sulfur-resistant methanation[J]. Catalysts, 2017, 7(5): 151. |
63 | Wang B W, Meng D J, Wang W H, et al. Effect of citric acid addition on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1479-1484. |
64 | Wang X L, Zhao Z, Chen Z T, et al. Effect of synthesis temperature on structure-activity-relationship over NiMo/γ-Al2O3 catalysts for the hydrodesulfurization of DBT and 4,6-DMDBT[J]. Fuel Processing Technology, 2017, 161: 52-61. |
65 | Cao Z K, Duan A J, Zhao Z, et al. A simple two-step method to synthesize the well-ordered mesoporous composite Ti-FDU-12 and its application in the hydrodesulfurization of DBT and 4,6-DMDBT[J]. Journal of Materials Chemistry A, 2014, 2(46): 19738-19749. |
66 | Daage M, Chianelli R R. Structure-function relations in molybdenum sulfide catalysts: the “rim-edge” model[J].Journal of Catalysis, 1994, 149(2): 414-427. |
[1] | 丁禹, 杨昌泽, 李军, 孙会东, 商辉. 原子尺度钼系加氢脱硫催化剂的研究进展与展望[J]. 化工学报, 2024, 75(5): 1735-1749. |
[2] | 潘越, 刘相洋, 黄奕晨, 李江涛, 邱丽, 李瑞丰, 李莎, 闫晓亮. Ni/Al2O3与ZnO距离对含硫菲加氢性能的影响[J]. 化工学报, 2024, 75(10): 3548-3556. |
[3] | 杨光, 程鑫, 王峥, 王晔, 张良俊, 吴静怡. 微纳多孔结构中稀薄气体流动渗透率的解析型预测模型[J]. 化工学报, 2022, 73(7): 2895-2901. |
[4] | 郑喜, 王涛, 任永胜, 赵珍珍, 王雪琪, 赵之平. 聚间苯二甲酰间苯二胺平板膜的制备及其性能研究[J]. 化工学报, 2022, 73(10): 4707-4721. |
[5] | 隋宝宽, 施尧, 林见阳, 刘文洁, 袁胜华, 耿新国, 段学志. 焙烧气氛和孔结构对加氢脱金属催化剂性能的影响[J]. 化工学报, 2021, 72(2): 993-1000. |
[6] | 王晓波,赵青山,程智年,张浩然,胡涵,王路海,吴明铂. 高性能碳基储能材料的设计、合成与应用[J]. 化工学报, 2020, 71(6): 2660-2677. |
[7] | 陈亮, 赵帆, 闫广精, 王春波. H2O和SO2对CFB内石灰石同时煅烧/硫化反应中煅烧动力学的协同作用[J]. 化工学报, 2018, 69(9): 3859-3868. |
[8] | 马卫园, 张东. 磷酸镁多孔材料的制备及其在结构超级电容器的应用[J]. 化工学报, 2018, 69(10): 4438-4448. |
[9] | 岳源源, 郑晓桂, 康颖, 白正帅, 袁珮, 朱海波, 鲍晓军. 基于镁铝水滑石的Mo/Al2O3-MgO催化剂制备及其加氢脱硫性能[J]. 化工学报, 2018, 69(1): 405-413. |
[10] | 陈超, 杨修春, 刘巍. 有机-无机杂化钙钛矿太阳能电池的研究进展[J]. 化工学报, 2017, 68(3): 811-820. |
[11] | 郭凤, 余剑, Tran Tuyet-Suong, 李长明, 许光文. 溶胶-凝胶原位合成钒钨钛催化剂及NH3-SCR性能[J]. 化工学报, 2017, 68(10): 3747-3754. |
[12] | 庄嘉豪, 靳国静, 古芳娜, 贾丽华, 苏发兵. 一锅法制备高活性高稳定性Ni-Nd-Al三元有序介孔甲烷化催化剂[J]. 化工学报, 2017, 68(10): 3823-3831. |
[13] | 张伟清, 郭文光, 储丽丽, 孔令朋, 靳广洲. 钼酸铵与LaHY固相反应机理[J]. 化工学报, 2016, 67(8): 3380-3386. |
[14] | 汪怀远, 肖博, 王池嘉, 程小双, 蒋凤. 静电纺丝法制备氧化钛-氧化石墨复合载体的加氢脱硫性能[J]. 化工学报, 2015, 66(7): 2514-2520. |
[15] | 李阳, 朱玉雯, 高继慧, 孙飞, 雷鸣. 活性焦孔结构演变规律及对脱硫性能的影响[J]. 化工学报, 2015, 66(3): 1126-1132. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 157
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||