化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2734-2743.DOI: 10.11949/0438-1157.20240261
陈引1,2(), 赵霄1(
), 杜王芳1, 杨竹强2, 李凯1, 赵建福1,3
收稿日期:
2024-03-04
修回日期:
2024-03-21
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
赵霄
作者简介:
陈引(1997—),女,硕士研究生,chenyin@mail.dlut.edu.cn
基金资助:
Yin CHEN1,2(), Xiao ZHAO1(
), Wangfang DU1, Zhuqiang YANG2, Kai LI1, Jianfu ZHAO1,3
Received:
2024-03-04
Revised:
2024-03-21
Online:
2024-08-25
Published:
2024-08-21
Contact:
Xiao ZHAO
摘要:
喷雾冷却过程中,液滴-液膜-热壁面多子过程交互的强干扰体系造成液膜流动特征的捕捉非常困难,致使喷雾冷却高效换热机理还未得到本质澄清。开展了HFE-7000和HFE-7100喷雾液膜流动与传热研究,明确相机内置感光参数、快门和光圈组合、取样策略等耦合影响下的液膜流动特性测试与诊断方案,针对不同表面均取得了良好的测试效果。提出了基于标准液膜的ADD型误差分析方法,给出相关参数的偏差和随机误差,获得了不同热通量、压力和喷嘴高度下HFE-7100液膜分布和流动过程润湿面积、接触线长度等特征及规律,发现孤立液膜润湿面积随表面温度升高而降低,接触线则随温度呈现出降低或少数工况降低-升高的趋势,并探讨了液膜流动特征与传热规律的有机联系。
中图分类号:
陈引, 赵霄, 杜王芳, 杨竹强, 李凯, 赵建福. 喷雾冷却液膜流动特性测试方案优化及传热规律分析[J]. 化工学报, 2024, 75(8): 2734-2743.
Yin CHEN, Xiao ZHAO, Wangfang DU, Zhuqiang YANG, Kai LI, Jianfu ZHAO. Optimization of diagnostic method for liquid film dynamics in spray cooling and heat transfer characteristics analysis[J]. CIESC Journal, 2024, 75(8): 2734-2743.
图9 不同快门速度的成像质量对比(p = 0.2 MPa, H = 110 mm, Tw = 60.48℃)
Fig.9 Comparison of imaging quality under different shutter speed (p = 0.2 MPa, H = 110 mm, Tw = 60.48℃)
1 | Silk E A, Golliher E L, Paneer Selvam R. Spray cooling heat transfer: technology overview and assessment of future challenges for micro-gravity application[J]. Energy Conversion and Management, 2008, 49(3): 453-468. |
2 | Zhang Y H, Ma X, Wang J Y, et al. Pool boiling heat transfer enhancement on the hybrid surfaces coupling capillary wick and minichannels[J]. International Journal of Heat and Mass Transfer, 2023, 203: 123804. |
3 | Konishi C, Mudawar I. Review of flow boiling and critical heat flux in microgravity[J]. International Journal of Heat and Mass Transfer, 2015, 80: 469-493. |
4 | Liu P, Wu K, Du W F, et al. Experimental study on subcooled pool boiling of FC-72 on a flat plate in normal and microgravity[J]. International Journal of Heat and Mass Transfer, 2023, 216: 124556. |
5 | 李晓阳, 李东, 陶明磊,等. 多喷嘴喷雾冷却表面传热特性实验研究[J]. 化工学报, 2024, 75(1): 231-241. |
Li X Y, Li D, Tao M L, et al. Experimental study of heat transfer characteristics of multi nozzle spray cooling surface[J]. CIESC Journal, 2024, 75(1): 231-241. | |
6 | Das L, Pati A R, Panda A, et al. The enhancement of spray cooling at very high initial temperature by using dextrose added water[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119311. |
7 | Tian J M, He C Q, Chen Y Q, et al. Experimental study on combined heat transfer enhancement due to macro-structured surface and electric field during electrospray cooling[J]. International Journal of Heat and Mass Transfer, 2024, 220: 125015. |
8 | Zhao X, Zhang B, Xi X Z, et al. Analysis and prediction of single-phase and two-phase cooling characteristics of intermittent sprays[J]. International Journal of Heat and Mass Transfer, 2019, 133: 619-630. |
9 | Zhou Z F, Chen B, Wang R, et al. Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens[J]. Experimental Thermal and Fluid Science, 2017, 82: 189-197. |
10 | Gao X, Li R. Effects of nozzle positioning on single-phase spray cooling[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1247-1257. |
11 | Qiao Y M, Chandra S. Spray cooling enhancement by addition of a surfactant[J]. Journal of Heat Transfer, 1998, 120(1): 92-98. |
12 | Pautsch A G, Shedd T A. Adiabatic and diabatic measurements of the liquid film thickness during spray cooling with FC-72[J]. International Journal of Heat and Mass Transfer, 2006, 49(15/16): 2610-2618. |
13 | Shedd T A, Pautsch A G. Spray impingement cooling with single- and multiple-nozzle arrays. Part Ⅱ: Visualization and empirical models[J]. International Journal of Heat and Mass Transfer, 2005, 48(15): 3176-3184. |
14 | Golliher E L, Zivich C P, Yao S C. Exploration of unsteady spray cooling for high power electronics at microgravity using NASA glenn's drop tower[C]//Proceedings of the ASME 2005 Summer Heat Transfer Conference Collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. San Francisco, California, USA, 2009: 609-612. |
15 | Pano M R O, Correia A M, Moreira A L N. High-power electronics thermal management with intermittent multijet sprays[J]. Applied Thermal Engineering, 2012, 37: 293-301. |
16 | Cheng W L, Liu Q N, Zhao R, et al. Experimental investigation of parameters effect on heat transfer of spray cooling[J]. Heat and Mass Transfer, 2010, 46(8): 911-921. |
17 | Zhang Z, Jiang P X, Christopher D M, et al. Experimental investigation of spray cooling on micro-, nano- and hybrid-structured surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 80: 26-37. |
18 | Serdyukov V, Miskiv N, Surtaev A. The simultaneous analysis of droplets' impacts and heat transfer during water spray cooling using a transparent heater[J]. Water, 2021, 13(19): 2730. |
19 | Tian J M, Kong L W, Li B F, et al. Experimental investigation on heat transfer performance during electrospray cooling with ethanol-R141b mixture[J]. Applied Thermal Engineering, 2023, 230: 120879. |
20 | Rini D P, Chen R H, Chow L C. Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling[J]. Journal of Heat Transfer, 2002, 124(1): 63-72. |
21 | Gambaryan-Roisman T, Kyriopoulos O, Roisman I, et al. Gravity effect on spray impact and spray cooling[J]. Microgravity Science and Technology, 2007, 19(3): 151-154. |
22 | Kyriopoulos O. Gravity effect on liquid film hydrodynamics and spray cooling[D]. Darmstadt: Darmstadt Technische Universität, 2010. |
23 | Hou Y, Tao Y J, Huai X L. Visualization of film wavelike characteristics and measurement of film thickness in spray cooling[J]. Journal of Thermal Science, 2013, 22(2): 186-195. |
24 | Martínez-Galván E, Ramos J C, Antón R, et al. Influence of surface roughness on a spray cooling system with R134a(Part Ⅱ): Film thickness measurements[J]. Experimental Thermal and Fluid Science, 2013, 48: 73-80. |
25 | Hsieh S S, Chen G W, Yeh Y F. Optical flow and thermal measurements for spray cooling[J]. International Journal of Heat and Mass Transfer, 2015, 87: 248-253. |
26 | Zhao X, Zhang H F, Zhang B, et al. Experimental investigation of the mechanism of isolated liquid film flow in spray cooling[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122904. |
27 | Horacek B, Kiger K T, Kim J. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48(8): 1425-1438. |
28 | Zhao X, Yin Z C, Zhang B. Experimental study on transient heat transfer characteristics of intermittent spray cooling[J]. Experimental Heat Transfer, 2020, 33(7): 613-632. |
29 | Sodtke C, Stephan P. Spray cooling on micro structured surfaces[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 4089-4097. |
30 | Zhao X, Zhang H F, Zhang B, et al. Dynamics and heat transfer characteristics of isolated liquid film in spray cooling[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122037. |
31 | Abernethy R, Thompson J. Uncertainty in gas turbine measurements[C]//Proceedings of the 9th Propulsion Conference. Reston, Virigina: AIAA, 1973: AIAA1973-1230. |
32 | Rausch M H, Kretschmer L, Will S, et al. Density, surface tension, and kinematic viscosity of hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500[J]. Journal of Chemical & Engineering Data, 2015, 60(12): 3759-3765. |
[1] | 李晓阳, 李东, 陶明磊, 周致富, 张灵怡, 苏力争, 张天宁, 李智, 陈斌. 多喷嘴喷雾冷却表面传热特性实验研究[J]. 化工学报, 2024, 75(1): 231-241. |
[2] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[3] | 李俊, 黎仕华, 孙志高, 宋士博. 超声对无沸腾区浸液式喷雾冷却的影响研究[J]. 化工学报, 2022, 73(4): 1566-1574. |
[4] | 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605. |
[5] | 黄瑞涛, 春江, 张峥, 李启凡, 温荣福, 马学虎. 微纳复合表面HFE-7100/水的BRT现象及沸腾传热特性[J]. 化工学报, 2021, 72(11): 5510-5519. |
[6] | 周年勇, 徐慕豪, 冯浩, 段锋, 王庆荣, 陈海飞, 郭强. 闭式喷雾冷却的瞬态传热过程研究[J]. 化工学报, 2020, 71(3): 1018-1025. |
[7] | 刘红, 何阳, 蔡畅, 高久良, 尹洪超. 乙醇和正丁醇添加剂对喷雾冷却的影响[J]. 化工学报, 2019, 70(1): 65-71. |
[8] | 亓航, 张伟, 巩亮. 喷雾冲击条件下液膜流动与传热模型[J]. 化工学报, 2018, 69(5): 2014-2022. |
[9] | 辛慧, 陈斌, 周致富, 田加猛. 激光溶脂手术脉冲式制冷剂喷雾冷却数值研究[J]. 化工学报, 2018, 69(12): 4966-4971. |
[10] | 陈斌, 周致富, 辛慧. 制冷剂瞬态闪蒸喷雾冷却研究进展[J]. 化工学报, 2018, 69(1): 57-68. |
[11] | 杨涛, 周致富, 陈斌, 赵曦, 王国祥. 表面温度测量方式对喷雾冷却表面传热特性的影响[J]. 化工学报, 2016, 67(11): 4558-4565. |
[12] | 田加猛, 陈斌, 李东, 周致富. 制冷剂瞬态喷雾冷却表面传热特性[J]. 化工学报, 2016, 67(10): 4064-4071. |
[13] | 周致富, 陈斌, 白飞龙, 王锐, 王国祥. 新型喷嘴R404a闪蒸瞬态喷雾冷却传热特性[J]. 化工学报, 2015, 66(S1): 100-105. |
[14] | 王锐, 周致富, 白飞龙, 陈斌, 王国祥. R404a喷雾冷却表面传热特性的时空不均匀性[J]. 化工学报, 2015, 66(4): 1258-1264. |
[15] | 陈华, 程文龙, 章玮玮. 真空闪蒸冷却换热机制及流量影响[J]. 化工学报, 2014, 65(10): 3783-3788. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 328
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 199
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||