化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1597-1605.doi: 10.11949/0438-1157.20211630

• 分离工程 • 上一篇    下一篇

基于流量校准的吸附测量方法及误差分析

刘碧强(),曹海山()   

  1. 清华大学机械工程学院能源与动力工程系,北京 100084
  • 收稿日期:2021-11-15 修回日期:2022-01-06 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 曹海山 E-mail:liubiqiang@mail.tsinghua.edu.cn;haishancao@tsinghua.edu.cn
  • 作者简介:刘碧强(1995—),男,博士后,liubiqiang@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(U21A20494);北京市自然科学基金项目(3212019)

Adsorption measurement method based on flow calibration and its error analysis

Biqiang LIU(),Haishan CAO()   

  1. Department of Energy and Power Engineering, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2021-11-15 Revised:2022-01-06 Published:2022-04-05 Online:2022-04-25
  • Contact: Haishan CAO E-mail:liubiqiang@mail.tsinghua.edu.cn;haishancao@tsinghua.edu.cn

摘要:

多孔吸附材料广泛应用于分离提纯、气体储存和工业催化等领域,吸附等温线的测定对研究吸附性质具有重要意义。针对传统容积法易受管路温度均匀性影响的问题,介绍了一种基于流量校准的吸附测量方法。分析了两种方法的误差传递,并对比了结构参数、物性参数和仪表精度对测量结果的影响。分析结果显示,增大校准球体积和样品室容积可提升传统容积法测量精度,提升样品量、比过剩吸附量、密度和仪表精度,可提升两种方法的测量精度。相比传统容积法,基于流量校准的吸附测量方法误差因子数量更少,可实现更低的测量误差。研究成果对提升容积法吸附测量精度具有指导意义。

关键词: 吸附, 测量, 状态方程, 误差分析, 流量控制器, 不确定度

Abstract:

Porous adsorbents are widely used in separation and purification, gas storage, and industrial catalysis, and the determination of adsorption isotherms is of great significance for studying adsorption properties. Aiming at solving the difficulty that the traditional volumetric method is easily affected by the temperature distribution along the pipeline, the paper introduces an adsorption measurement method based on flow calibration. The error transfer of both methods is analyzed, and the influence of the structure parameters, physical parameters and instrument accuracy on the adsorption measurement is compared. The results show that increasing the calibration ball volume and sample chamber volume can improve the adsorption measurement accuracy of the traditional volumetric method, and increasing the sample volume, excess adsorption amount, skeleton density and instrument accuracy can improve the measurement accuracy of both methods. Compared to the traditional volumetric method, the method based on flow calibration has fewer error factors and can achieve lower measurement errors. The results can help improve the measurement accuracy of the volumetric method.

Key words: adsorption, measurement, equation of state, error analysis, mass flow controller, uncertainty

中图分类号: 

  • O 647.32

图1

容积法吸附测量装置原理图"

表1

吸附测量系统的各平衡状态"

平衡状态工质状态气体分配系统校准腔样品室(包括过渡段)气体吸附量
1氦气气体分配系统充气p1,T10,T10,T10
2氦气连通校准腔p2,T1p2,T10,T10
3氦气校准腔内加入校准球p3,T1p3,T10,T10
4氦气连通加入样品后的样品室p4,T10,T1p4,T10
5氦气调节样品室温度至测量温度Ttestp5,T10,T1p5,Teff0
6吸附气体气体分配系统充气p6,T10,T10,T10
7吸附气体连通加入样品的样品室,调节样品室温度至测量温度Ttestp7,T10,T1p8,Teffnads

图2

基于流量校准的吸附测量流程图"

图3

各因素影响(a) 容积法;(b) 基于流量校准的吸附测量"

表2

两种方法测量不确定度表达式参数"

A容积法基于流量校准的容积法
BilBil
Zp,T
VMp1,p2,p3,Z1,Z2,Z3,T1,Vcal8p1,p4,Z1,Z4,T1,mVM,?He6
VSp1,p4,Z1,Z4,VM5p4,Z4,T1,mS,He4
Teffp1,p5,Z1,Z5,Zeff,T1,VM,VS8p5,Zeff,mT,He,VS4
xadsp6,p7,p8,Z6,Z7,Zeff,ads,T1,VM,VS,Teff10p8,Zeff,ads,mads,VS,Teff5

表3

基本参数设定"

参数数值
恒温箱温度/K313.15
校准腔容积/m35.25×10-6
气体分配管路系统容积/m31.05×10-5
压力测量误差限±0.05%×量程
质量流量测量误差限±0.2%×读数

图4

气体分配系统容积相对不确定度与校准球体积的关系"

图5

气体分配系统容积相对不确定度极小值与校准球体积的关系"

图6

气体分配系统容积相对不确定度与校准腔容积的关系"

图7

气体分配系统容积相对不确定度极小值与校准腔容积的关系"

图8

样品室容积相对不确定度与样品室容积的关系"

图9

样品室容积相对不确定度极小值与样品室容积的关系"

图10

比过剩吸附量相对不确定度与样品骨架体积占比的关系"

图11

比过剩吸附量相对不确定度和比过剩吸附量(a)、样品密度(b)的关系"

图12

比过剩吸附量相对不确定度与压力测量精度(a)、温度测量精度(b)的关系"

图13

比过剩吸附量相对不确定度与质量流量测量精度的关系"

1 Zhou D D, Chen P, Wang C . et al. Intermediate-sized molecular sieving of styrene from larger and smaller analogues[J]. Nature Materials, 2019, 18: 994-998.
2 Finsy V, Ma L, Alaerts L, et al. Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework[J]. Microporous Mesoporous Materials, 2009, 120: 221-227.
3 Li H, Li L B, Lin R B, et al. Porous metal-organic frameworks for gas storage and separation: status and challenges[J]. EnergyChem, 2019, 1(1): 10006.
4 Dinca M, Long J R, Hydrogen storage in microporous metal-organic frameworks with exposed metal sites[J]. Angewandte Chemie International Edition, 2008, 47: 6766-6779.
5 Rowsell J L C, Millward A R, Park K S, et al. Hydrogen sorption in functionalized metal-organic frameworks[J]. Journal of the American Chemical Society, 2004, 126: 5666–5667.
6 Vo T S, Hossain M M, Jeong H M, et al. Heavy metal removal applications using adsorptive membranes[J]. Nano Convergence, 2020, 7: 36.
7 Piumetti Marco. A brief history of the science of catalysis (Ⅰ): From the early concepts to single-site heterogeneous catalysts[J]. Chimica Oggi, 2014, 32(6): 22-27.
8 赵振国. 吸附作用应用原理[M]. 北京: 化学工业出版社, 2005: 11.
Zhao Z G. Principle of Application of Adsorption[M]. Beijing: Chemical Industry Press, 2005: 11.
9 Tzabar N, Nitrogen Grossman G., methane, and ethane sorption on activated carbon[J]. Cryogenics, 2011, 51: 499-508.
10 Tzabar N, ter Brake H J M. Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride[J]. Adsorption, 2016, 22: 901-914.
11 Brandani S, Mangano E, Net Sarkisov L., excess and absolute adsorption and adsorption of helium[J]. Adsorption, 2016, 22: 261-276.
12 Liu J H, Cao H S, Shi Y X, et al. Enhanced methane delivery in MIL-101(Cr) by means of subambient cooling[J]. Energy & Fuels, 2021, 35: 6898-6908.
13 张辉, 刘应书, 李永玲, 等. 基于容量法的高压静态吸附仪的研制与应用[J]. 低温与特气, 2010, 28(5): 20-23.
Zhang H, Liu Y S, Li Y L, et al. Manufacture and application of the volumetric adsorption analyzer at high pressure[J]. Low Temperature and Specialty Gases, 2010, 28(5): 20-23.
14 周尚文, 薛华庆, 郭伟, 等. 基于重量法的页岩气超临界吸附特征实验研究[J]. 煤炭学报, 2016, 41(11): 2806-2812.
Zhou S W, Xue H Q, Guo W, et al.Supercritical isothermal adsorption characteristics of shale gas based on gravimetric method[J].Journal of China Coal Society, 2016, 41(11): 2806-2812.
15 俞凌杰, 范明, 陈红宇, 等. 富有机质页岩高温高压重量法等温吸附实验[J]. 石油学报, 2015, 36(5): 557-563.
Yu L J, Fan M, Chen H Y, et al. Isothermal adsorption experiment of organic-rich shale under high temperature and pressure using gravimetric method[J]. Acta Petrolei Sinica, 2015, 36(5): 557-563.
16 汤进华, 梁晓怿, 龙东辉, 等. 活性炭孔结构和表面官能团对吸附甲醛性能影响[J]. 炭素技术, 2007(3): 21-25.
Tang J H, Liang X Y, Long D H, et al. Effects of micropore and functional groups of activated carbon on adsorption behavior of formaldehyde[J]. Carbon Techniques, 2007(3): 21-25.
17 Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity[M]. London: Academic Press, 1982.
18 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气体吸附BET法测定固态物质比表面积: [S]. 北京: 中国标准出版社, 2017.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of the specific surface area of solids by gas adsorption using the BET method: [S]. Beijing: Standards Press of China, 2017.
19 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 2版. 李国希, 译. 北京: 化学工业出版社, 2006: 185.
Kondo S, Ishikawa T, Abe I. Adsorption Science[M]. 2nd ed. Li G X, trans. Beijing: Chemical Industry Press, 2006: 185.
20 赵会民, 林丹, 杨刚, 等. 有机胺修饰具有较大孔径介孔材料的二氧化碳吸附性能[J]. 物理化学学报, 2012, 28(4): 985-992.
Zhao H M, Lin D, Yang G, et al. Adsorption capacity of carbon dioxide on amine modified mesoporous materials with larger pore sizes[J]. Acta Phys. -Chim. Sin., 2012, 28(4): 985-992.
21 汤涛, 张淑华. 用IR-电子天平重量吸附法快速测定催化剂表面酸度[J]. 分析试验室, 2004(6): 57-59.
Tang T, Zhang S H. Determination of surface acidity on catalysts by IR-electronic balance with mass adsorption[J]. Chinese Journal of Analysis Laboratory, 2004(6): 57-59.
22 周尚文, 王红岩, 薛华庆, 等. 页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J]. 天然气工业, 2016, 36(11): 12-20.
Zhou S W, Wang H Y, Xue H Q, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method[J]. Natural Gas Industry, 2016, 36(11): 12-20.
23 Belmabkhout Y, Frere M, Weireld G D. High-pressure adsorption measurements: a comparative study of the volumetric and gravimetric methods[J]. Measurement Science and Technology, 2004, 15: 848-858.
[1] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[2] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[3] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[4] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[5] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[6] 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522.
[7] 吴子睿, 孙瑞, 石凌峰, 田华, 王轩, 舒歌群. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492.
[8] 王毅, 熊启钊, 陈杨, 杨江峰, 李立博, 李晋平. 锆基金属有机骨架材料用于氨吸附性能的研究[J]. 化工学报, 2022, 73(4): 1772-1780.
[9] 罗顺桦, 王振雷, 王昕. 基于二子空间协同训练算法的半监督软测量建模[J]. 化工学报, 2022, 73(3): 1270-1279.
[10] 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
[11] 兰文杰, 胡晓洁, 蔡迪宗. 界面探针法测量液滴与固体壁面间相互作用力[J]. 化工学报, 2022, 73(3): 1119-1126.
[12] 孙裕坤, 杨焘, 吴江涛. R32+R1234yf+R1234ze(E)混合制冷剂气液相平衡实验研究[J]. 化工学报, 2022, 73(3): 1063-1071.
[13] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[14] 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206.
[15] 王洒, 温怡静, 郭丹煜, 周欣, 李忠. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!