化工学报

• •    

酵母细胞催化合成18α-甘草酸

邢登雪1(), 张良2, 李文强3, 梁建华2, 秦磊3, 张根林1(), 李春1,2,3()   

  1. 1.石河子大学化学化工学院/新疆兵团绿色化工过程重点实验室,新疆 石河子 832003
    2.北京理工大学化学与化工学院生物化工研究所/医药分子科学与制剂工信部重点实验室,北京 100081
    3.清华大学化学工程系/工业生物催化教育部重点实验室,北京 100084
  • 收稿日期:2024-03-18 修回日期:2024-06-20 出版日期:2024-06-24
  • 通讯作者: 张根林,李春
  • 作者简介:邢登雪(1996-),女,硕士研究生,xueunchallenge@163.com
  • 基金资助:
    国家自然科学基金项目(22138006)

Synthesis of 18α-glycyrrhizic acid by yeast cells

Dengxue XING1(), Liang ZHANG2, Wenqiang LI3, Jianhua LIANG2, Lei QIN3, Genlin ZHANG1(), Chun LI1,2,3()   

  1. 1.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
    2.Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
    3.Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2024-03-18 Revised:2024-06-20 Online:2024-06-24
  • Contact: Genlin ZHANG, Chun LI

摘要:

18α-甘草酸(18α-Glycyrrhizin, 18α-GL)是一种齐墩果烷型皂苷,18α-GL比其差向异构体18β-GL极性小、亲脂性好,更强的抗毒抗炎作用和更高的肝脏靶向性使18α-GL成为保肝护肝领域的主要药物成分。但目前18α-GL的制备方法污染大,效率低,亟需开发一种绿色简单地合成18α-GL的方法。本研究利用酵母细胞异源表达了糖基转移酶,通过全细胞催化的方式鉴定出可催化18α-甘草次酸(18α-Glycyrrhetinic acid,18α-GA)特异性合成18α-单葡萄糖醛酸甘草次酸(18α-Glycyrrhetinic acid 3-O-monoglucuronide,18α-GAMG)的糖基转移酶cGuCSyGT和催化18α-GAMG 特异性合成18α-GL的糖基转移酶GgUGT1。进一步运用了蛋白质结构预测和分子动力学模拟探究了cGuCSyGT对18α-GA的催化活性比18β-GA低的原因。最后采用优化底物添加浓度、底盘细胞、底物添加时间、反应时间、培养基成分补加和底物溶剂的策略构建了酵母催化合成18α-GAMG和18α-GL的最优工艺,使18α-GAMG和18α-GL的产量分别达到36.38(±1.87)mg/L和39.32(±0.75)mg/L。本研究首次实现了18α-GAMG和18α-GL的微生物催化合成,为将来18α-GL的微生物全合成提供了理论基础和技术支撑。

关键词: 甘草, 18α-甘草酸, 18α-单葡萄糖醛酸甘草次酸, 糖基转移酶, 酵母细胞催化

Abstract:

18α-Glycyrrhizin (18α-GL), an oleanane-type saponin, is less polar and more lipophilic than its epimer 18β-GL, and has stronger antitoxic resistance. The inflammatory effect and higher hepar targeting make 18α-GL the main pharmaceutical ingredient in the field of hepar protection. However, the current preparation method of 18α-GL is highly polluting and has low efficiency. Therefore, there is an urgent need to develop a green and simple method to synthesize 18α-GL. Glycosyltransferases were heterologously expressed in yeast cells. Through whole-cell catalysis, glycosyltransferases cGuCSyGT was identified as being able to catalyze the specific synthesis of 18α-Glycyrrhetinic acid 3-O-monoglucuronide (18α-GAMG) from 18α-Glycyrrhetinic acid (18α-GA) and GgUGT1 was identified as being able to catalyze the specific synthesis of 18α-glycyrrhizin (18α-GL) from 18α-GAMG. We further employed protein structure prediction and molecular dynamics simulation to explore the reason why cGuCSyGT has lower catalytic activity for 18α-GA than 18β-GA. Finally, an optimal process for yeast catalytic synthesis of 18α-GAMG and 18α-GL was constructed by optimizing various parameters, including substrate addition concentration, chassis host cells, substrate addition time, catalytic time, medium component addition and substrate solvent. Thus, the production of 18α-GAMG and 18α-GL reached 36.38(±1.87)mg/L and 39.32(±0.75)mg/L, respectively. This research achieved the microbial catalytic synthesis of 18α-GAMG and 18α-GL for the first time, which will provide a theoretical basis and technical support for the future total microbial synthesis of 18α-GL.

Key words: licorice, 18α-glycyrrhizic acid, 18α-glycyrrhetinic acid 3-O-monoglucuronide, glycosyltransferase, yeast cell catalysis

中图分类号: