化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3202-3211.doi: 10.11949/0438-1157.20220490

• 生物化学工程与技术 • 上一篇    下一篇

甘草黄酮合酶催化甘草素特异性合成7,4′-二羟基黄酮

孙甲琛1(),孙文涛2,孙慧1,吕波3(),李春1,2,3()   

  1. 1.石河子大学化学化工学院/新疆兵团绿色化工过程重点实验室,新疆 石河子 832003
    2.清华大学化学工程系 生物化工研究所/工业生物催化教育部重点实验室,北京 100084
    3.北京理工大学化学与化工学院 生物化工研究所/医药分子科学与制剂工信部重点实验室,北京 100081
  • 收稿日期:2022-04-06 修回日期:2022-05-12 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 吕波,李春 E-mail:sunjiachen_synbio@163.com;lv-b@ bit.edu.cn;lichun@tsinghua.edu.cn
  • 作者简介:孙甲琛(1996—),男,硕士研究生,sunjiachen_synbio@163.com

Licorice flavone synthase Ⅱ catalyzes liquiritigenin to specifically synthesize 7,4′-dihydroxyflavone

Jiachen SUN1(),Wentao SUN2,Hui SUN1,Bo LYU3(),Chun LI1,2,3()   

  1. 1.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
    2.Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    3.Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2022-04-06 Revised:2022-05-12 Published:2022-07-05 Online:2022-08-01
  • Contact: Bo LYU,Chun LI E-mail:sunjiachen_synbio@163.com;lv-b@ bit.edu.cn;lichun@tsinghua.edu.cn

摘要:

利用同源序列比对和分子进化树分析从胀果甘草转录组数据库中挖掘并成功克隆到2个黄酮合酶基因:Gur.gene26505和Gur.gene26116。经表征Gur.gene26505为黄酮合酶Ⅱ,具有催化甘草素特异性合成7,4′-二羟基黄酮的特性,而Gur.gene26116为黄烷酮2位羟化酶,可催化甘草素生成包括7,4′-二羟基黄酮在内的三种产物。进一步通过蛋白质结构预测、分子对接和分子动力学模拟探究了黄酮合酶Ⅱ(Gur.gene26505)催化合成7,4′-二羟基黄酮特异性的原因。由于Gur.gene26505活性口袋附近特有的刚性结构β片层使大位阻苯丙氨酸残基翻转至羟化中心下方,消除了羟化产物2-羟基甘草素进入脱水中心的阻力进而发生C2-C3位的脱水反应特异性生成7,4′-二羟基黄酮。最后通过基因过表达、反应条件优化和强化菌体生长建立了7,4′-二羟基黄酮特异性合成的最佳细胞催化工艺,使甘草素转化率达到了76.67%。

关键词: 甘草黄酮合酶Ⅱ, 甘草素, 7,4′-二羟基黄酮, 特异性转化, 生物催化

Abstract:

Using homologous sequence alignment and molecular phylogenetic tree analysis, two flavonoid synthase genes are successfully cloned from the Glycyrrhiza inflata: Gur.gene26505 and Gur.gene26116. Gur.gene26505 is characterized as a flavonoid synthase Ⅱ, catalyzing liquiritigenin to specifically synthesize 7,4'-dihydroxyflavone, while Gur.gene26116 is a flavanone 2-hydroxylase that catalyzes liquiritigenin to synthesize three products including 7,4'-dihydroxyflavone. The reason for the specificity of 7,4'-dihydroxyflavone catalyzed by flavonoid synthase Ⅱ (Gur.gene26505) was further explored through protein structure prediction, molecular docking, and molecular dynamics simulations. Due to the unique rigid structure β-sheet near the active pocket of Gur.gene26505, the large sterically hindered phenylalanine residue is turned over to the lower part of the hydroxylation center, which eliminates the resistance of the hydroxylated product 2-hydroxyliquiritigenin to enter the dehydration center, occurring dehydration at C2-C3 positions and generating 7,4'-dihydroxyflavone. Finally, the optimal cell catalysis process for the specific synthesis of 7,4'-dihydroxyflavone is established through gene overexpression, optimization of reaction conditions and enhancement of bacterial growth, and the conversion rate of liquiritigenin reaches 76.67%.

Key words: licorice flavonoid synthase Ⅱ, liquiritigenin, 7,4'-dihydroxyflavone, specific transformation, biocatalysis

中图分类号: 

  • Q 814
1 Nabavi S M, Šamec D, Tomczyk M, et al. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering[J]. Biotechnology Advances, 2020, 38: 107316.
2 杨怡萌, 陈星宇, 吴娅, 等. 蒲公英黄酮抗氧化活性的构效关系分析[J]. 化学通报, 2020, 83(11): 1031-1037.
Yang Y M, Chen X Y, Wu Y, et al. Structure and antioxidant activities relationship of dandelion flavonoids[J]. Chemistry, 2020, 83(11): 1031-1037.
3 Akram M, Rasool A, An T, et al. Metabolic engineering of Yarrowia lipolytica for liquiritigenin production[J]. Chemical Engineering Science, 2021, 230: 116177.
4 Zhou Z G, Li D D, Chen Y, et al. Discussion on the structural modification and antitumor activity of flavonoids[J]. Current Topics in Medicinal Chemistry, 2022: 2022Mar8.
5 李春, 孙文涛, 刘天罡, 等. 天然产物:健康与生态的守护神[J]. 合成生物学, 2021, 2(5): 663-665.
Li C, Sun W T, Liu T G, et al. Natural products: patron saint of health and ecology [J]. Synthetic Biology Journal, 2021, 2(5): 663-665.
6 Gulcin İ. Antioxidants and antioxidant methods: an updated overview[J]. Archives of Toxicology, 2020, 94(3): 651-715.
7 Lin Y H, Shen X L, Yuan Q P, et al. Microbial biosynthesis of the anticoagulant precursor 4-hydroxycoumarin[J]. Nature Communications, 2013, 4: 2603.
8 Song W, Qiao X, Chen K, et al. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza Species and their hybrids[J]. Analytical Chemistry, 2017, 89(5): 3146-3153.
9 Su X Q, Song Y L, Zhang J, et al. Dihydrochalcones and homoisoflavanes from the red resin of Dracaena cochinchinensis (Chinese dragon’s blood)[J]. Fitoterapia, 2014, 99: 64-71.
10 Liu C D, Weir D, Busse P, et al. The flavonoid 7,4'-dihydroxyflavone inhibits MUC5AC gene expression, production, and secretion via regulation of NF-κB, STAT6, and HDAC2[J]. Phytotherapy Research, 2015, 29(6): 925-932.
11 Liu C D, Yang N, Chen X K, et al. The flavonoid 7,4'-dihydroxyflavone prevents dexamethasone paradoxical adverse effect on eotaxin production by human fibroblasts[J]. Phytotherapy Research, 2017, 31(3): 449-458.
12 Chávez-González M L, Sepúlveda L, Verma D K, et al. Conventional and emerging extraction processes of flavonoids[J]. Processes, 2020, 8(4): 434.
13 Murti Y, Pathak D, Pathak K. Green chemistry approaches to the synthesis of flavonoids[J]. Current Organic Chemistry, 2021, 25(17): 2005-2027.
14 Lv Y K, Marsafari M, Koffas M, et al. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis[J]. ACS Synthetic Biology, 2019, 8(11): 2514-2523.
15 Zhao M T, Hong X L, Abdullah, et al. Rapid biosynthesis of phenolic glycosides and their derivatives from biomass-derived hydroxycinnamates[J]. Green Chemistry, 2021, 23(2): 838-847.
16 任师超, 孙秋艳, 冯旭东, 等. 微生物细胞工厂合成五环三萜皂苷类化合物[J]. 合成生物学, 2022, 3(1): 168-183.
Ren S C, Sun Q Y, Feng X D, et al. Biosynthesis of pentacyclic triterpenoid saponins in microbial cell factories[J]. Synthetic Biology Journal, 2022, 3(1): 168-183.
17 Sun W T, Xue H J, Liu H, et al. Controlling chemo- and regioselectivity of a plant P450 in yeast cell toward rare licorice triterpenoid biosynthesis[J]. ACS Catalysis, 2020, 10(7): 4253-4260.
18 孙文涛, 张昕哲, 万盛通, 等. Ⅱ型细胞色素P450酶氧化β-香树脂醇的选择性调控研究[J]. 合成生物学, 2021, 2(5): 804-814.
Sun W T, Zhang X Z, Wan S T. Regulation on oxidation selectivity for β-amyrin by Class Ⅱ cytochrome P450 enzymes [J]. Synthetic Biology Journal, 2021, 2(5): 804-814.
19 成雅琪, 吴静, 刘立明, 等. 生物催化C—N成键反应合成手性胺的研究进展[J]. 化工学报, 2021, 72(1): 205-215.
Cheng Y Q, Wu J, Liu L M, et al. Advances in the synthesis of chiral amines by biocatalytic C—N bond formation[J]. CIESC Journal, 2021, 72(1): 205-215.
20 齐娜, 宋伟, 刘立明, 等. 生物催化C—C成键反应及其应用[J]. 化工学报, 2021, 72(1): 216-228.
Qi N, Song W, Liu L M, et al. Biocatalysis C—C bonding reaction and its application[J]. CIESC Journal, 2021, 72(1): 216-228.
21 Fliegmann J, Furtwängler K, Malterer G, et al. Flavone synthase Ⅱ (CYP93B16) from soybean (Glycine max L.)[J]. Phytochemistry, 2010, 71(5/6): 508-514.
22 Wang J Y, Zhang C H, Li Y S. Genome-wide identification and expression profiles of 13 key structural gene families involved in the biosynthesis of rice flavonoid scaffolds[J]. Genes, 2022, 13(3): 410.
23 Wang Y Y, Shi Y F, Li K Y, et al. Roles of the 2-oxoglutarate-dependent dioxygenase superfamily in the flavonoid pathway: a review of the functional diversity of F3H, FNS I, FLS, and LDOX/ANS[J]. Molecules (Basel, Switzerland), 2021, 26(21): 6745.
24 Lam P Y, Zhu F Y, Chan W L, et al. Cytochrome P450 93G1 is a flavone synthase Ⅱ that channels flavanones to the biosynthesis of tricin O-linked conjugates in rice[J]. Plant Physiology, 2014, 165(3): 1315-1327.
25 Kitada C, Gong Z Z, Tanaka Y, et al. Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens [J]. Plant and Cell Physiology, 2001, 42(12): 1338-1344.
26 Zhao Q, Zhang Y, Wang G, et al. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis [J]. Science Advances, 2016, 2(4): e1501780.
27 Wu J, Wang X C, Liu Y, et al. Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation[J]. Scientific Reports, 2016, 6: 19245.
28 Han X J, Wu Y F, Gao S, et al. Functional characterization of a Plagiochasma appendiculatum flavone synthase Ⅰ showing flavanone 2-hydroxylase activity[J]. FEBS Letters, 2014, 588(14): 2307-2314.
29 Martens S, Forkmann G, Matern U, et al. Cloning of parsley flavone synthase I[J]. Phytochemistry, 2001, 58(1): 43-46.
30 Kim J H, Cheon Y M, Kim B G, et al. Analysis of flavonoids and characterization of the OsFNS gene involved in flavone biosynthesis in rice[J]. Journal of Plant Biology, 2008, 51(2): 97-101.
31 Martens S, Mithöfer A. Flavones and flavone synthases[J]. Phytochemistry, 2005, 66(20): 2399-2407.
32 Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873): 590-596.
33 Trott O, Olson A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. Journal of Computational Chemistry, 2010, 31(2): 455-461.
34 Akashi T, Fukuchi-Mizutani M, Aoki T, et al. Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase Ⅱ, that catalyzes direct conversion of flavanones to flavones[J]. Plant & Cell Physiology, 1999, 40(11): 1182-1186.
35 Martens S, Forkmann G. Cloning and expression of flavone synthase Ⅱ from Gerbera hybrids [J]. The Plant Journal, 1999, 20(5): 611-618.
36 Li L Y, Cheng H, Gai J Y, et al. Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula [J]. Planta, 2007, 226(1): 109-123.
37 Nakatsuka T, Nishihara M, Mishiba K, et al. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in Gentian plants[J]. Plant Science, 2005, 168(5): 1309-1318.
38 Witte S, Moco S, Vervoort J, et al. Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L [J]. Planta, 2009, 229(5): 1135-1146.
39 Hsu Y H, Tagami T, Matsunaga K, et al. Functional characterization of UDP-rhamnose-dependent rhamnosyltransferase involved in anthocyanin modification, a key enzyme determining blue coloration in Lobelia erinus [J]. The Plant Journal, 2017, 89(2): 325-337.
[1] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[2] 王淋, 付乾, 肖帅, 李卓, 李俊, 张亮, 朱恂, 廖强. 高效可见光响应微生物/光电化学耦合人工光合作用系统[J]. 化工学报, 2022, 73(2): 887-893.
[3] 宋伟, 王金辉, 胡贵鹏, 陈修来, 刘立明, 吴静. 多酶级联催化合成(R)-β-酪氨酸[J]. 化工学报, 2022, 73(1): 352-361.
[4] 刘姝睿, 吴雪娥, 王远鹏. 纳米材料介导微生物胞外电子传递过程的研究进展[J]. 化工学报, 2021, 72(7): 3576-3589.
[5] 段凌暄, 姚光晓, 江亮, 王世珍. 耐有机溶剂氨基酸脱氢酶基因挖掘与非天然氨基酸的非水相合成[J]. 化工学报, 2021, 72(7): 3757-3767.
[6] 潘禹, 王华生, 詹鸿峰, 孙缓缓, 范超, 刘祖文, 闫海. 微囊藻毒素降解酶MlrA的结构功能分析[J]. 化工学报, 2021, 72(3): 1643-1653.
[7] 夏欢, 卢滇楠, 戈钧, 吴建中, 刘铮. 纳米结构酶催化剂研究进展[J]. 化工学报, 2021, 72(12): 6086-6092.
[8] 成雅琪, 吴静, 刘立明, 宋伟. 生物催化C—N成键反应合成手性胺的研究进展[J]. 化工学报, 2021, 72(1): 205-215.
[9] 王炼, 吴迪, 周景文. 木脂素的生物合成及其微生物法生产的研究进展[J]. 化工学报, 2021, 72(1): 320-333.
[10] 齐娜, 宋伟, 刘立明, 吴静. 生物催化C—C成键反应及其应用[J]. 化工学报, 2021, 72(1): 216-228.
[11] 赵贞尧, 张保财, 李锋, 宋浩. 产电细胞的合成生物学设计构建[J]. 化工学报, 2021, 72(1): 468-482.
[12] 徐静, 由紫暄, 张君奇, 陈正, 吴德光, 李锋, 宋浩. 合成生物学方法改造电活性生物膜研究进展[J]. 化工学报, 2020, 71(9): 3950-3962.
[13] 邹树平, 姜镇涛, 王志才, 柳志强, 郑裕国. 环氧化物水解酶交联细胞聚集体催化合成(R)-环氧氯丙烷[J]. 化工学报, 2020, 71(9): 4238-4245.
[14] 周柒, 丁红蕾, 郭得通, 潘卫国, 杜威. CO2催化氢化制清洁能源的研究进展及趋势[J]. 化工学报, 2020, 71(8): 3428-3443.
[15] 吴玉玲, 邵明龙, 周武林, 高惠芳, 张显, 徐美娟, 杨套伟, 饶志明. 重组大肠杆菌表达17β-羟基类固醇脱氢酶全细胞催化合成宝丹酮的研究[J]. 化工学报, 2020, 71(7): 3229-3237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!