化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3869-3879.DOI: 10.11949/0438-1157.20190607
收稿日期:
2019-05-31
修回日期:
2019-07-23
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
李春
作者简介:
李诺楠(1995—),女,硕士研究生,基金资助:
Received:
2019-05-31
Revised:
2019-07-23
Online:
2019-10-05
Published:
2019-10-05
Contact:
Chun LI
摘要:
三萜皂苷类化合物通常由一个或多个糖基连接在疏水的皂苷元上构成,其作为传统中草药的活性成分有着广泛应用。三萜皂苷类化合物的传统获取方法是从植物中提取,由于植物中三萜皂苷类化合物含量较低,植物生长受到土地资源、气候、环境等因素影响较大,严重制约了其大规模推广和应用。利用合成生物学技术,设计构建微生物细胞工厂合成三萜皂苷类化合物被认为是一种变革性的生产方法,成为新的研究热点。在三萜皂苷类化合物的合成过程中,糖基转移酶起着重要作用。阐述了利用糖基转移酶合成三萜皂苷类化合物的研究进展,为三萜皂苷类化合物的进一步应用提供参考。
中图分类号:
李诺楠, 李春. 糖基转移酶在三萜皂苷合成中的应用[J]. 化工学报, 2019, 70(10): 3869-3879.
Nuonan LI, Chun LI. Applications of glycosyltransferases in synthesis of triterpenoid saponins[J]. CIESC Journal, 2019, 70(10): 3869-3879.
1 | Vincken J P , Heng L , Groot A D , et al . Saponins, classification and occurrence in the plant kingdom[J]. Phytochemistry, 2007, 68(3): 275-297. |
2 | Sawai S , Saito K . Triterpenoid biosynthesis and engineering in plants[J]. Frontiers in Plant Science, 2011, 2(25): 1-8. |
3 | Gauthier C , Legault J , Pichette A . Recent progress in the synthesis of naturally occurring triterpenoid saponins[J]. Mini-Reviews in Organic Chemistry. 2009, 6(4): 321-344. |
4 | Qi L W , Wang C Z , Yuan C S . Ginsenosides from American ginseng: chemical and pharmacological diversity[J]. Phytochemistry, 2011, 72(8): 689-699. |
5 | Zhao Y J , Lyu B , Feng X D , et al . Perspective on biotransformation and de novo biosynthesis of licorice constituents[J]. Journal of Agricultural and Food Chemistry, 2017, 65(51): 11147-11156. |
6 | Itkin M , Davidovich-Rikanati R , Cohen S , et al . The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii [J]. Proceedings of the National Academy of Sciences. 2016, 113(47): E7619-E7628. |
7 | Scognamiglio M , D'Abrosca B , Fiumano V , et al . Oleanane saponins from Bellis sylvestris Cyr. and evaluation of their phytotoxicity on Aegilops geniculata Roth[J]. Phytochemistry, 2012, 84(12): 125-134. |
8 | Zhao Y J , Li C . Biosynthesis of plant triterpenoid saponins in microbial cell factories[J]. Journal of Agricultural and Food Chemistry, 2018, 66(46): 12155-12165. |
9 | Szakiel A , Pączkowski C , Henry M . Influence of environmental biotic factors on the content of saponins in plants[J]. Phytochemistry Reviews, 2011, 10(4): 471-491. |
10 | Lairson L L , Henrissat B , Davies G J , et al . Glycosyltransferases: structures, functions, and mechanisms[J]. Annual Review of Biochemistry, 2008, 77: 521-555. |
11 | Roberts S C . Production and engineering of terpenoids in plant cell culture[J]. Nature Chemical Biology, 2007, 3(7): 387-395. |
12 | Zhao F L , Bai P , Nan W H , et al . A modular engineering strategy for high‐level production of protopanaxadiol from ethanol by Saccharomyces cerevisiae [J]. AIChE Journal, 2019, 65(3): 866-874. |
13 | Kuzina V , Ekstrøm C T , Andersen S B . Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach[J]. Plant Physiology, 2009, 151(4): 1977-1990. |
14 | Augustin J M , Sylvia D , Tetsuro S , et al . UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance[J]. Plant Physiology, 2012, 160(4): 1881-1895. |
15 |
Xu J , Wang X D , Zhang H Y , et al . Synthesis of triterpenoid derivatives and their anti-tumor and anti-hepatic fibrosis activities[J]. Natural Product Research, 2018. DOI:10.1080/14786419.2018.1499642 .
DOI |
16 | 戴住波, 王勇, 周志华, 等 . 植物天然产物合成生物学研究[J]. 中国科学院院刊, 2018, 33(11): 106-116. |
Dai Z B , Wang Y , Zhou Z H , et al . Synthetic biology for production of plant-derived natural products[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 106-116. | |
17 | Zhang S P , Wu Y Y , Jin J , et al . De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis[J]. Biochemical and Biophysical Research Communications, 2015, 466(3): 450-455. |
18 | İ Gülçin , Mshvildadze V , Gepdiremen A , et al . The antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(beta-D-glucopyranosyl)-hederagenin[J]. Phytotherapy Research, 2006, 20(2): 130-134. |
19 | Cheng L , Liang S , Wu J , et al . A hederagenin saponin isolated from Clematis ganpiniana induces apoptosis in breast cancer cells via the mitochondrial pathway[J]. Oncology Letters, 2018, 15(2): 1737-1743. |
20 | 刘家鑫, 陈明明, 杨雪艳, 等 . 常春藤药材HPLC指纹图谱及8种成分的含量测定方法[J]. 沈阳药科大学学报, 2017, 34(11): 979-986. |
Liu J X , Chen M M , Yang X Y , et al . HPLC fingerprint and quantitative analysis of 8 components from Hedera helix [J]. Journal of Shenyang Pharmaceutical University, 2017, 34(11): 979-986. | |
21 | 田庆来, 官月平, 张波, 等 . 甘草有效成分的药理作用研究进展[J]. 天然产物研究与开发, 2006,18(2): 343-347. |
Tian Q L , Gaun Y P , Zhang B , et al . Research advances on pharmacological activities of components in licorice[J]. Natural Product Research and Development, 2006, 18(2): 343-347. | |
22 | 崔杏雨, 崔健, 陈树伟 . 甘草酸制备新工艺的研究[J]. 太原理工大学学报, 2001, 32(3): 271-273. |
Cui X Y , Cui J , Chen S W . Study of new technology of the preparation of glycrrhizic acid from licorice[J]. Journal of Taiyuan University of Technology, 2001, 32(3): 271-273. | |
23 | 韩金玉, 刘翀, 王华, 等 . 正相液相制备色谱分离纯化三七叶甙中人参皂甙单体Rb3[J]. 高校化学工程学报, 2005, 19(2): 192-196. |
Han J Y , Liu C , Wang H , et al . Isolation and purification of ginsenoide Rb3 by HPLC method[J]. Journal of Chemical Engineering of Chinese Universities, 2005, 19(2): 192-196. | |
24 | 孟祥颖, 刘银燕 . 氮, 磷, 钾配合施用对人参质量影响的研究[J]. 质量指南, 1996, (6): 36-37. |
Meng X Y , Liu Y Y . Studying of Panax ginseng C. A. meyer quality affected by N, P, K mixed[J]. Quality Guide, 1996, (6): 36-37. | |
25 | 张治安, 徐克章 . 光照条件对参株碳水化合物和人参皂甙含量的影响[J]. 吉林农业大学学报, 1994, (3): 15-17. |
Zhang Z A , Xu K Z . Effects of light intensity on content of soluble sugar , starch and ginseng saponins in ginseng plant[J]. Journal of Jilin Agricultural University, 1994, (3): 15-17. | |
26 | 邢建民, 赵德修, 李茂寅, 等 . 植物细胞培养生产黄酮类化合物研究进展[J]. 中国生物工程杂志, 2001, 21(1): 47-50. |
Xing J M , Zhao D X , Li M Y , et al . Advances in the production of flavonoids by plant cell cultures[J]. China Biotechnology, 2001, 21(1): 47-50. | |
27 | Paddon C J , Westfall P J , Pitera D J , et al . High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528. |
28 | Dai Z B , Liu Y , Zhang X A , et al . Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J]. Metabolic Engineering, 2013, 20: 146-156. |
29 | Dai Z B , Wang B B , Liu Y , et al . Producing aglycons of ginsenosides in bakers’ yeast[J]. Scientific Reports, 2014, 4: 3698. |
30 | Wang P P , Wei W , Ye W , et al . Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency[J]. Cell Discovery, 2019, 5(1): 5. |
31 | Jung S C , Kim W , Park S C , et al . Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd[J]. Plant and Cell Physiology, 2014, 55(12): 2177-2188. |
32 | Kim O T , Um Y , Jin M L , et al . A novel multifunctional C-23 oxidase, CYP714E19, is involved in asiaticoside biosynthesis[J]. Plant and Cell Physiology, 2018, 59(6): 1200-1213. |
33 | Kim O T , Jin M L , Lee D Y , et al . Characterization of the asiatic acid glucosyltransferase, UGT73AH1, involved in asiaticoside biosynthesis in Centella asiatica (L.) Urban[J]. International Journal of Molecular Sciences, 2017, 18(12): 2630. |
34 | Han J Y , Chun J H , Oh S A , et al . Transcriptomic analysis of Kalopanax septemlobus and characterization of KsBAS, CYP716A94 and CYP72A397 genes involved in hederagenin saponin biosynthesis[J]. Plant and Cell Physiology, 2017, 59(2): 319–330. |
35 | Ø Erthmann P , Agerbirk N , Bak S . A tandem array of UDP-glycosyltransferases from the UGT73C subfamily glycosylate sapogenins, forming a spectrum of mono- and bisdesmosidic saponins[J]. Plant Molecular Biology, 2018, 97(1/2): 1-19. |
36 | Liu Q , Khakimov B , Cárdenas P D , et al . The cytochrome P450 CYP72A552 is key to production of hederagenin‐based saponins that mediate plant defense against herbivores[J]. New Phytologist, 2019, 222(3): 1599-1609. |
37 | Sun W T , Qin L , Xue H J , et al . Novel trends for producing plant triterpenoids in yeast[J]. Critical Reviews in Biotechnology, 2019, 39(5): 618-632. |
38 | Augustin J M , Kuzina V , Andersen S B , et al . Molecular activities, biosynthesis and evolution of triterpenoid saponins[J]. Phytochemistry, 2011, 72(6): 435-457. |
39 | Seki H , Tamura K , Muranaka T . P450s and UGTs: key players in the structural diversity of triterpenoid saponins[J]. Plant and Cell Physiology, 2015, 56(8): 1463-1471. |
40 | Jeena G S , SFatima, Tripathi P , et al . Comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri identifies potential genes related to triterpenoid saponin biosynthesis[J]. BMC Genomics, 2017, 18(1): 490. |
41 | Luo H M , Sun C , Sun Y Z , et al . Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers[J]. BMC Genomics, 2011, 12(5): S5. |
42 | Moses T , Pollier J , Faizal A , et al . Unraveling the triterpenoid saponin biosynthesis of the African shrub Maesa lanceolata [J]. Molecular Plant, 2015, 8(1): 122-135. |
43 | Liu Y L , Zhang P F , Song M L , et al . Transcriptome analysis and development of SSR molecular markers in Glycyrrhiza uralensis Fisch[J]. Plos One, 2015, 10(11): e0143017. |
44 | Tang Q Y , Chen G , Song W L , et al . Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides[J]. Planta, 2018, 249(2): 393–406. |
45 | Dai L H , Li J , Yang J G , et al . Use of a promiscuous glycosyltransferase from Bacillus subtilis 168 for the enzymatic synthesis of novel protopanaxatriol-type ginsenosides[J]. Journal of Agricultural and Food Chemistry, 2018, 66(4): 943-949. |
46 | Zhang T T , Gong T , Hu Z F , et al . Enzymatic synthesis of unnatural ginsenosides using a promiscuous UDP-glucosyltransferase from Bacillus subtilis [J]. Molecules, 2018, 23(11): 2797. |
47 | Zhuang Y , Yang G Y , Chen X H , et al . Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme[J]. Metabolic Engineering, 2017, 42: 25-32. |
48 |
Rahimi S , Kim J , Mijakovic I , et al . Triterpenoid-biosynthetic UDP-glycosyltransferases from plants[J]. Biotechnology Advances, 2019. DOI: 10.1016/j.biotechadv.2019.04.016 .
DOI |
49 | Gloster T M . Advances in understanding glycosyltransferases from a structural perspective[J]. Current Opinion in Structural Biology, 2014, 28: 131-141. |
50 | Meech R , Hu D G , McKinnon R A , et al . The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms[J]. Physiological Reviews, 2019, 99(2): 1153-1222. |
51 | Liang D M , Liu J H , Wu H , et al . Glycosyltransferases: mechanisms and applications in natural product development[J]. Chemical Society Reviews, 2015, 44(22): 8350-8374. |
52 | Osbourn A . Saponins and plant defence — a soap story[J]. Trends in Plant Science, 1996, 1(1): 4-9. |
53 | Leung K W , Wong A S T . Pharmacology of ginsenosides: a literature review[J]. Chinese Medicine, 2010, 5(1): 20. |
54 | Lu J , Yao L , Li J X , et al . Characterization of UDP-glycosyltransferase involved in biosynthesis of ginsenosides Rg1 and Rb1 and identification of critical conserved amino acid residues for its function[J]. Journal of Agricultural and Food Chemistry, 2018, 66(36): 9446-9455. |
55 | Xu Q F , Fang X L , Chen D F . Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats[J]. Journal of Ethnopharmacology, 2003, 84(2): 187-192. |
56 | Lee S J , Lee J S , Lee E , et al . The ginsenoside metabolite compound K inhibits hormone-independent breast cancer through downregulation of cyclin D1[J]. Journal of Functional Foods, 2018, 46: 159-166. |
57 | Liao L M , Zhang Y , Lin S F , et al . Enzymatic transformation from protopanaxadiol ginsenoside Rb1 into rare ginsenoside C-K and its anti-cancer activity[J]. Advanced Materials Research, 2013, 641: 752-755. |
58 | Wang P P , Wei Y J , Fan Y , et al . Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts[J]. Metabolic Engineering, 2015, 29: 97-105. |
59 | Yan X , Fan Y , Wei W , et al . Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24(6): 770. |
60 | 高雪岩, 王文全, 魏胜利, 等 . 甘草及其活性成分的药理活性研究进展[J]. 中国中药杂志, 2009, 34(21): 2695-2700. |
Gao X Y , Wang W Q , Wei S L , et al . Advances in studies on pharmacological activities of licorice and its active ingredients[J]. Chinese Journal of Chinese Materia Medica, 2009, 34(21): 2695-2700. | |
61 | Armanini D , Fiore C , Mattarello M J , et al . History of the endocrine effects of licorice[J]. Experimental and Clinical Endocrinology & Diabetes. 2002, 110(6): 257-261. |
62 | Cinatl J , Morgenstern B , Bauer G , et al . Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus[J]. The Lancet, 2003, 361(9374): 2045-2046. |
63 | Mabuchi A , Wake K , Marlini M , et al . Protection by glycyrrhizin against warm ischemia-reperfusion-induced cellular injury and derangement of the microcirculatory blood flow in the rat liver[J]. Microcirculation, 2010, 16(4): 364-376. |
64 | 谢彦, 徐淑永, 曾和平 . 甘草属植物中三萜类化合物研究概述[J]. 广州化工, 2004, 32(1): 1-5. |
Xie Y , Xu S Y , Zeng H P . A survey on triterpenolids of glycyrrhiza[J]. Guangzhou Chemical Industry, 2004, 32(1): 1-5. | |
65 | Zhu M , Wang C X , Sun W T , et al . Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metabolic Engineering, 2018, 45: 43-50. |
66 | Seki H , Sawai S , Ohyama K , et al . Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin[J]. The Plant Cell, 2011, 23(11): 4112-4123. |
67 | Seki H , Ohyama K , Sawai S , et al . Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14204-14209. |
68 | Xu G J , Cai W , Gao W , et al . A novel glucuronosyltransferase has an unprecedented ability to catalyse continuous two-step glucuronosylation of glycyrrhetinic acid to yield glycyrrhizin[J]. New Phytologist, 2016, 212(1): 123–135. |
69 | He J B , Chen K , Hu Z M , et al . UGT73F17, a new glycosyltransferase from Glycyrrhiza uralensis, catalyzes the regiospecific glycosylation of pentacyclic triterpenoids[J]. Chemical Communications, 2018, 54(62): 8594-8597. |
70 | Liu X C , Zhang L , Feng X D , et al . Biosynthesis of glycyrrhetinic acid-3-O-monoglucose using glycosyltransferase UGT73C11 from Barbarea vulgaris [J]. Industrial & Engineering Chemistry Research, 2017, 56(51): 14949-14958. |
71 | Lee S O , Simons A L , Murphy P A , et al . Soyasaponins lowered plasma cholesterol and increased fecal bile acids in female golden Syrian hamsters [J]. Experimental Biology and Medicine, 2005, 230(7): 472-478. |
72 | Kinjo J , Imagire M , Udayama M , et al . Structure-hepatoprotective relationships study of soyasaponins I—IV having soyasapogenol B as aglycone[J]. Planta Medica, 1998, 64(3): 233-236. |
73 | Shibuya M , Nishimura K , Yasuyama N , et al . Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max [J]. FEBS Letters, 2010, 584(11): 2258-2264. |
74 | Kurosawa Y , Takahara H , Shiraiwa M . UDP-glucuronic acid: soyasapogenol glucuronosyltransferase involved in saponin biosynthesis in germinating soybean seeds[J]. Planta, 2002, 215(4): 620–629. |
75 | Sayama T , Ono E , Takagi K , et al . The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean[J]. The Plant Cell, 2012, 24(5): 2123–2138. |
[1] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[2] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[3] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[4] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[5] | 王欣慧, 王颖, 姚明东, 肖文海. 维生素A生物合成的研究进展[J]. 化工学报, 2022, 73(10): 4311-4323. |
[6] | 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324. |
[7] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
[8] | 王欣, 赵鹏, 李清扬, 田平芳. 半导体合成生物学的研究进展[J]. 化工学报, 2021, 72(5): 2426-2435. |
[9] | 王炼, 吴迪, 周景文. 木脂素的生物合成及其微生物法生产的研究进展[J]. 化工学报, 2021, 72(1): 320-333. |
[10] | 赵贞尧, 张保财, 李锋, 宋浩. 产电细胞的合成生物学设计构建[J]. 化工学报, 2021, 72(1): 468-482. |
[11] | 王凯峰, 王金鹏, 韦萍, 纪晓俊. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物[J]. 化工学报, 2021, 72(1): 351-365. |
[12] | 高虎涛, 申晓林, 孙新晓, 王佳, 袁其朋. 代谢工程调控策略在生物合成氨基酸及其衍生物中的应用[J]. 化工学报, 2020, 71(9): 4058-4070. |
[13] | 徐静, 由紫暄, 张君奇, 陈正, 吴德光, 李锋, 宋浩. 合成生物学方法改造电活性生物膜研究进展[J]. 化工学报, 2020, 71(9): 3950-3962. |
[14] | 秦磊, 俞杰, 宁小钰, 孙文涛, 李春. 合成生物系统构建与绿色生物“智”造[J]. 化工学报, 2020, 71(9): 3979-3994. |
[15] | 徐彦芹, 杨锡智, 罗若诗, 黄玉红, 霍锋, 王丹. 合成生物学在生物基塑料制造中的应用[J]. 化工学报, 2020, 71(10): 4520-4531. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||