化工学报 ›› 2025, Vol. 76 ›› Issue (8): 4004-4016.DOI: 10.11949/0438-1157.20250003
收稿日期:2025-01-02
修回日期:2025-03-20
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
林志敏
作者简介:吴林凯(1998—),男,硕士研究生,WLK2212491682@163.com
基金资助:
Linkai WU1,2(
), Zhimin LIN1,2(
), Liangbi WANG1,2
Received:2025-01-02
Revised:2025-03-20
Online:2025-08-25
Published:2025-09-17
Contact:
Zhimin LIN
摘要:
基于相变结霜本质为热质传递的原理,进一步考虑霜层孔隙率逐渐降低和热阻增大分别致使水蒸气扩散能力和换热效果下降的实际情况,进而引入有效扩散系数Deff和当量传热系数heq。同时,修正了传质因子jm和传热因子jh的计算式,将无量纲参数J(jm/jh)耦合至准稳态结霜模型中,从而对霜层特性参数进行了合理修正。为验证改进模型的预测准确性,与Lee模型、Lenic模型和Wong模型的计算结果以及7个典型实验工况的38组测量数据进行了对比验证。结果表明,该模型预测精度相较上述模型分别提升了31.81%、64.57%和50.64%。此外,模型预测值与典型工况下的实验数据吻合较好,所有工况下霜层厚度的平均误差小于6.57%,霜层密度的平均误差不足7.10%,霜层表面温度及结霜量的平均误差分别为8.41%和9.59%。
中图分类号:
吴林凯, 林志敏, 王良璧. 基于热质传递效应的准稳态结霜模型改进及数值验证[J]. 化工学报, 2025, 76(8): 4004-4016.
Linkai WU, Zhimin LIN, Liangbi WANG. Improvement and numerical validation of quasi-steady-state frosting model based on thermal and mass transfer effect[J]. CIESC Journal, 2025, 76(8): 4004-4016.
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| a0 | -5.675×103 | b0 | -5.800×103 |
| a1 | 6.393 | b1 | 1.391 |
| a2 | -9.678×10-3 | b2 | -4.864×10-2 |
| a3 | 6.212×10-7 | b3 | 4.176×10-5 |
| a4 | 2.075×10-9 | b4 | -1.445×10-8 |
| a5 | -9.484×10-13 | b5 | 6.546 |
| a6 | 4.164 |
表1 关联式中经验参数的取值
Table 1 Values of empirical parameters in the correlation formula
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| a0 | -5.675×103 | b0 | -5.800×103 |
| a1 | 6.393 | b1 | 1.391 |
| a2 | -9.678×10-3 | b2 | -4.864×10-2 |
| a3 | 6.212×10-7 | b3 | 4.176×10-5 |
| a4 | 2.075×10-9 | b4 | -1.445×10-8 |
| a5 | -9.484×10-13 | b5 | 6.546 |
| a6 | 4.164 |
| Run. | t/min | Ta/℃ | φ/% | ua/(m/s) | Tw/℃ | 传统模型 | 改进模型 | ||
|---|---|---|---|---|---|---|---|---|---|
| mfr/g | Δmfr/% | mfr/g | Δmfr/% | ||||||
| 1 | 60 | 16 | 50 | 0.7 | -5 | 0.84 | 24.77 | 1.04 | 6.31 |
| 2 | -10 | 1.24 | 6.76 | 1.41 | 6.02 | ||||
| 3 | -15 | 1.56 | 1.62 | 1.66 | 7.79 | ||||
| 4 | 22 | 80 | -5 | 4.31 | 18.60 | 3.86 | 6.34 | ||
| 5 | -10 | 4.88 | 26.88 | 4.25 | 10.39 | ||||
| 6 | -15 | 5.28 | 38.81 | 4.49 | 18.16 | ||||
| 1* | 120 | 16 | 50 | -5 | 1.45 | 30.04 | 1.94 | 6.73 | |
| 2* | -10 | 2.29 | 11.09 | 2.72 | 5.84 | ||||
| 3* | -15 | 2.96 | 3.67 | 3.27 | 14.34 | ||||
| 4* | 22 | 80 | -5 | 8.73 | 22.54 | 7.64 | 7.30 | ||
| 5* | -10 | 9.84 | 29.03 | 8.48 | 11.14 | ||||
| 6* | -15 | 10.70 | 36.65 | 8.98 | 14.69 | ||||
表2 不同工况下结霜量模拟值与实验数据[25]的对比
Table 2 Comparison of frost mass between the simulated and experimental results[25] for different conditions
| Run. | t/min | Ta/℃ | φ/% | ua/(m/s) | Tw/℃ | 传统模型 | 改进模型 | ||
|---|---|---|---|---|---|---|---|---|---|
| mfr/g | Δmfr/% | mfr/g | Δmfr/% | ||||||
| 1 | 60 | 16 | 50 | 0.7 | -5 | 0.84 | 24.77 | 1.04 | 6.31 |
| 2 | -10 | 1.24 | 6.76 | 1.41 | 6.02 | ||||
| 3 | -15 | 1.56 | 1.62 | 1.66 | 7.79 | ||||
| 4 | 22 | 80 | -5 | 4.31 | 18.60 | 3.86 | 6.34 | ||
| 5 | -10 | 4.88 | 26.88 | 4.25 | 10.39 | ||||
| 6 | -15 | 5.28 | 38.81 | 4.49 | 18.16 | ||||
| 1* | 120 | 16 | 50 | -5 | 1.45 | 30.04 | 1.94 | 6.73 | |
| 2* | -10 | 2.29 | 11.09 | 2.72 | 5.84 | ||||
| 3* | -15 | 2.96 | 3.67 | 3.27 | 14.34 | ||||
| 4* | 22 | 80 | -5 | 8.73 | 22.54 | 7.64 | 7.30 | ||
| 5* | -10 | 9.84 | 29.03 | 8.48 | 11.14 | ||||
| 6* | -15 | 10.70 | 36.65 | 8.98 | 14.69 | ||||
| [1] | 张毅, 张冠敏, 冷学礼, 等. 无霜空气源热泵技术研究进展[J]. 化工学报, 2020, 71(12): 5400-5419. |
| Zhang Y, Zhang G M, Leng X L, et al. Research progress on frost-free air source heat pump technology[J]. CIESC Journal, 2020, 71(12): 5400-5419. | |
| [2] | Zhu J H, Sun Y Y, Wang W, et al. A novel temperature-humidity-time defrosting control method based on a frosting map for air-source heat pumps[J]. International Journal of Refrigeration, 2015, 54: 45-54. |
| [3] | Jones B W, Parker J D. Frost formation with varying environmental parameters[J]. Journal of Heat Transfer, 1975, 97(2): 255-259. |
| [4] | 童钧耕, 杨志斌. 结霜过程的变密度分析[J]. 低温工程, 1996(2): 14-18. |
| Tong J G, Yang Z B. Variable density analysis of frost process[J]. Cryogenics, 1996(2): 14-18. | |
| [5] | Yun R, Kim Y, Min M K. Modeling of frost growth and frost properties with airflow over a flat plate[J]. International Journal of Refrigeration, 2002, 25(3): 362-371. |
| [6] | Yang D K, Lee K S. Modeling of frosting behavior on a cold plate[J]. International Journal of Refrigeration, 2005, 28(3): 396-402. |
| [7] | 张龙, 宋孟杰, 邵苛苛, 等. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
| Zhang L, Song M J, Shao K K, et al. Simulation study on frosting at windward fin end of heat exchanger[J]. CIESC Journal, 2023, 74(S1): 179-182. | |
| [8] | Lüer A, Beer H. Frost deposition in a parallel plate channel under laminar flow conditions[J]. International Journal of Thermal Sciences, 2000, 39(1): 85-95. |
| [9] | Lenic K, Trp A, Frankovic B. Transient two-dimensional model of frost formation on a fin-and-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 22-32. |
| [10] | Armengol J M, Salinas C T, Xamán J, et al. Modeling of frost formation over parallel cold plates considering a two-dimensional growth rate[J]. International Journal of Thermal Sciences, 2016, 104: 245-256. |
| [11] | 崔静. 结霜与抑霜机理研究及数值模拟[D]. 大连: 大连理工大学, 2011. |
| Cui J. Study and numerical simulation of frost formation and frost suppression mechanism[D]. Dalian: Dalian University of Technology, 2011. | |
| [12] | Wang Z P, Cui W Z, Li L J, et al. A numerical study of heterogeneous nucleation of ice crystals and frost layer growth on horizontal cold surfaces[J]. International Journal of Heat and Mass Transfer, 2024, 228: 125604. |
| [13] | Kim C, Lee J, Lee K S. Numerical modeling of frost growth and densification on a cold plate using frost formation resistance[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1055-1063. |
| [14] | Wu X M, Chu F Q, Ma Q. Frosting model based on phase change driving force[J]. International Journal of Heat and Mass Transfer, 2017, 110: 760-767. |
| [15] | Hayashi Y, Aoki A, Adachi S, et al. Study of frost properties correlating with frost formation types[J]. Journal of Heat Transfer, 1977, 99(2): 239-245. |
| [16] | Padhmanabhan S K, Fisher D E, Cremaschi L, et al. Modeling non-uniform frost growth on a fin-and-tube heat exchanger[J]. International Journal of Refrigeration, 2011, 34(8): 2018-2030. |
| [17] | Na B, Webb R L. Mass transfer on and within a frost layer[J]. International Journal of Heat and Mass Transfer, 2004, 47(5): 899-911. |
| [18] | Yao Y, Jiang Y Q, Deng S M, et al. A study on the performance of the airside heat exchanger under frosting in an air source heat pump water heater/chiller unit[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18): 3745-3756. |
| [19] | Lee K S, Kim W S, Lee T H. A one-dimensional model for frost formation on a cold flat surface[J]. International Journal of Heat and Mass Transfer, 1997, 40(18): 4359-4365. |
| [20] | Wang C C, Chi K Y. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers(part Ⅰ): New experimental data[J]. International Journal of Heat and Mass Transfer, 2000, 43(15): 2681-2691. |
| [21] | Yang D K, Lee K S. Dimensionless correlations of frost properties on a cold plate[J]. International Journal of Refrigeration, 2004, 27(1): 89-96. |
| [22] | Breque F, Nemer M. Modeling of a fan-supplied flat-tube heat exchanger exposed to non-uniform frost growth[J]. International Journal of Refrigeration, 2017, 75: 129-140. |
| [23] | Yang D K, Lee K S, Song S. Modeling for predicting frosting behavior of a fin-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2006, 49(7/8): 1472-1479. |
| [24] | Zhang L, Song M J, Deng S M, et al. Frosting mechanism and behaviors on surfaces with simple geometries: a state-of-the-art literature review[J]. Applied Thermal Engineering, 2022, 215: 118984. |
| [25] | Hermes C J L, Piucco R O, Barbosa J R, et al. A study of frost growth and densification on flat surfaces[J]. Experimental Thermal and Fluid Science, 2009, 33(2): 371-379. |
| [26] | Wu X M, Ma Q, Chu F Q, et al. Phase change mass transfer model for frost growth and densification[J]. International Journal of Heat and Mass Transfer, 2016, 96: 11-19. |
| [27] | Chen G, Deng X Z, Zhang G, et al. Simulation of frost growth and densification on horizontal plates with supersaturated interface condition[J]. International Journal of Heat and Mass Transfer, 2019, 133: 426-434. |
| [28] | 范晨, 梁彩华, 江楚遥, 等. 空气源热泵结霜/除霜特性的数值模拟[J]. 制冷技术, 2014, 34(1): 18-25. |
| Fan C, Liang C H, Jiang C Y, et al. Numerical simulation of frosting/defrosting characteristics of air source heat pump[J]. Chinese Journal of Refrigeration Technology, 2014, 34(1): 18-25. | |
| [29] | Xu Z M, Wang Z P, Liang Z, et al. A frost model based on the frost layer's supporting function[J]. International Journal of Heat and Mass Transfer, 2023, 202: 123741. |
| [30] | Zhang L, Jiang Y Q, Dong J K, et al. An experimental study on the effects of frosting conditions on frost distribution and growth on finned tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 128: 748-761. |
| [31] | Wong J C Q, Pareek V K, Sun B. CFD analysis of phase change behaviour and frost growth under various conditions using mass transfer theory[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123396. |
| [32] | Lee K S, Kim W S. The effects of design and operating factors on the frost growth and thermal performance of a flat plate fin-tube heat exchanger under the frosting condition[J]. KSME International Journal, 1999, 13(12): 973-981. |
| [1] | 张圣美, 李明, 张莹, 易茜, 杨依婷, 刘雅莉. 乳化剂和温度对相变微胶囊性能的影响分析[J]. 化工学报, 2025, 76(S1): 444-452. |
| [2] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [3] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [4] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [5] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [6] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [7] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [8] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [9] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [10] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [11] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [12] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [13] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [14] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [15] | 苏伟, 赵大海, 金旭, 刘忠彦, 李静, 张小松. 吸湿液滴与混合润湿性表面协同抑霜特性研究[J]. 化工学报, 2025, 76(S1): 140-151. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号