| [1] |
陈永翀. 储能未来的技术发展路径[J]. 能源, 2019(1): 84-85.
|
|
Chen Y C. Technical development path of energy storage in the future[J]. Energy, 2019(1): 84-85.
|
| [2] |
陈永翀, 冯彩梅, 刘勇. 双碳背景下中国储新比的发展趋势[J]. 能源, 2021(8): 41-45.
|
|
Chen Y C, Feng C M, Liu Y. The development trend of China's reserve-to-fresh ratio under the background of double carbon[J]. Energy, 2021(8): 41-45.
|
| [3] |
顾正建, 陶倩艺, 杨智皋, 等. 磷酸铁锂与三元锂离子电池加热下的热失控行为[J]. 电池, 2024, 54(4): 513-518.
|
|
Gu Z J, Tao Q Y, Yang Z G, et al. Thermal runaway behavior of LiFePO4 and ternary Li-ion batteries under heating[J]. Battery Bimonthly, 2024, 54(4): 513-518.
|
| [4] |
Tete P R, Gupta M M, Joshi S S. Developments in battery thermal management systems for electric vehicles: a technical review[J]. Journal of Energy Storage, 2021, 35: 102255.
|
| [5] |
Wang H M, Shi W J, Hu F, et al. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode[J]. Energy, 2021, 224: 120072.
|
| [6] |
杨佳兴, 张恒运, 徐屹东. 基于电化学-热耦合模型的锂离子电池组件产热分析[J]. 储能科学与技术, 2023, 12(8): 2615-2625.
|
|
Yang J X, Zhang H Y, Xu Y D. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model[J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625.
|
| [7] |
刘邦金, 汪林威, 吴月月, 等. 锂离子电池热管理研究进展[J]. 化工学报, 2024, 75(12): 4413-4431.
|
|
Liu B J, Wang L W, Wu Y Y, et al. Advances in thermal management of lithium-ion batteries[J]. CIESC Journal, 2024, 75(12): 4413-4431.
|
| [8] |
Hossain Ahmed S, Kang X S, Bade Shrestha S O. Effects of temperature on internal resistances of lithium-ion batteries[J]. Journal of Energy Resources Technology, 2015, 137(3): 031901.
|
| [9] |
Situ W F, Yang X Q, Li X X, et al. Effect of high temperature environment on the performance of LiNi0.5Co0.2Mn0.3O2 battery[J]. International Journal of Heat and Mass Transfer, 2017, 104: 743-748.
|
| [10] |
Sarkar S, Amin M T, El-Halwagi M M, et al. Thermal behavior of LiFePO4 battery at faster C-rates and lower ambient temperatures[J]. Process Safety and Environmental Protection, 2024, 186: 118-133.
|
| [11] |
Lin C J, Xu S C, Liu J L. Measurement of heat generation in a 40 Ah LiFePO4 prismatic battery using accelerating rate calorimetry[J]. International Journal of Hydrogen Energy, 2018, 43(17): 8375-8384.
|
| [12] |
Liu S B, Zhang H Y, Xu X B. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels[J]. Journal of Energy Storage, 2021, 36: 102446.
|
| [13] |
Ziat K, Louahlia H, Petrone R, et al. Experimental investigation on the impact of the battery charging/discharging current ratio on the operating temperature and heat generation[J]. International Journal of Energy Research, 2021, 45(11): 16754-16768.
|
| [14] |
Lyu P Z, Huo Y T, Qu Z G, et al. Investigation on the thermal behavior of Ni-rich NMC lithium ion battery for energy storage[J]. Applied Thermal Engineering, 2020, 166: 114749.
|
| [15] |
Sheng L, Su L, Zhang H Y, et al. An improved calorimetric method for characterizations of the specific heat and the heat generation rate in a prismatic lithium ion battery cell[J]. Energy Conversion and Management, 2019, 180: 724-732.
|
| [16] |
Bai Y, Li L M, Li Y, et al. Reversible and irreversible heat generation of NCA/Si-C pouch cell during electrochemical energy-storage process[J]. Journal of Energy Chemistry, 2019, 29: 95-102.
|
| [17] |
徐文军. 锂离子电池充放电循环过程的热行为及液冷策略模拟研究[D]. 合肥: 中国科学技术大学, 2020.
|
|
Xu W J. Simulation study on thermal behavior and liquid cooling strategy of lithium-ion battery during charge-discharge cycle[D]. Hefei: University of Science and Technology of China, 2020.
|
| [18] |
Huang Y X, Lai H X. Effects of discharge rate on electrochemical and thermal characteristics of LiFePO4/graphite battery[J]. Applied Thermal Engineering, 2019, 157: 113744.
|
| [19] |
Ji H S, Luo T B, Dai L M, et al. Numerical investigation on the polarization and thermal characteristics of LiFePO4-based batteries during charging process[J]. Applied Thermal Engineering, 2022, 214: 118709.
|
| [20] |
Liu J L, Duan Q L, Ma M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: 227263.
|
| [21] |
Meda U S, Lal L, Sushantha M, et al. Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: a review on the recent advances[J]. Journal of Energy Storage, 2022, 47: 103564.
|
| [22] |
闻文, 王慧艳, 周静红, 等. 石墨负极颗粒对锂离子电池容量衰减及SEI膜生长影响的模拟研究[J]. 化工学报, 2024, 75(1): 366-376.
|
|
Wen W, Wang H Y, Zhou J H, et al. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth[J]. CIESC Journal, 2024, 75(1): 366-376.
|
| [23] |
Capkova D, Knap V, Fedorkova A S, et al. Investigation of the temperature and DOD effect on the performance-degradation behavior of lithium-sulfur pouch cells during calendar aging[J]. Applied Energy, 2023, 332: 120543.
|
| [24] |
Lewerenz M, Münnix J, Schmalstieg J, et al. Systematic aging of commercial L i F e P O 4 graphite cylindrical cells including a theory explaining rise of capacity during aging[J]. Journal of Power Sources, 2017, 345: 254-263.
|
| [25] |
Xiong D J, Petibon R, Nie M, et al. Interactions between positive and negative electrodes in Li-ion cells operated at high temperature and high voltage[J]. Journal of the Electrochemical Society, 2016, 163(3): A546-A551.
|
| [26] |
Rauhala T, Jalkanen K, Romann T, et al. Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem study[J]. Journal of Energy Storage, 2018, 20: 344-356.
|
| [27] |
Cai Z H, Mendoza S, Goodman J, et al. The influence of cycling, temperature, and electrode gapping on the safety of prismatic lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): 160515.
|
| [28] |
You H Z, Dai H F, Li L Z. The aging law of low temperature charging of lithium-ion battery[C]//SAE Technical Paper Series. Shanghai, China: Tongji University, 2019.
|
| [29] |
Diao W P, Saxena S, Pecht M. Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells[J]. Journal of Power Sources, 2019, 435: 226830.
|
| [30] |
黄海宁. 磷酸铁锂电池循环寿命衰减和寿命预测[J]. 电源技术, 2022, 46(4): 376-379.
|
|
Huang H N. Cycle life fading of LiFePO4 lithium-ion battery and its life prediction[J]. Chinese Journal of Power Sources, 2022, 46(4): 376-379.
|