化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4824-4837.DOI: 10.11949/0438-1157.20250295
胡金琦1,2(
), 闵春华1,2(
), 李小龙1,2, 范元鸿1,2, 王坤1,2
收稿日期:2025-03-24
修回日期:2025-04-15
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
闵春华
作者简介:胡金琦(1997—),男,博士研究生,202211301006@stu.hebut.edu.cn
基金资助:
Jinqi HU1,2(
), Chunhua MIN1,2(
), Xiaolong LI1,2, Yuanhong FAN1,2, Kun WANG1,2
Received:2025-03-24
Revised:2025-04-15
Online:2025-09-25
Published:2025-10-23
Contact:
Chunhua MIN
摘要:
为优化振动叶片(VB)形成的振荡流场,提升流体混合能力与综合传热性能,提出一种振动叶片与柔性板的耦合结构(VBFP)。通过实验、数值模拟及混沌分析,揭示流体混合与传热强化机制。结果表明,VB诱导周期性旋涡脱落与破碎,形成具有混沌特性的高速振荡流,使流动演化为混沌混合,但旋涡分布不均导致中心区域传热较差。在振荡流的驱动下,柔性板的被动变形振荡诱导次级和近壁旋涡,形成二次高速气流,增强非线性特征和能量级联效应,从而强化流体混沌混合,改善传热。相较光滑通道,VBFP降低时均最高温度(Tmax,av)16.7℃,改善时均Nusselt数(Nuav)69.1%,最终提升综合传热因子(η)42%;最高温度相当时,功耗和噪声分别降低6.4 W和20 dB,具备显著节能降噪优势。
中图分类号:
胡金琦, 闵春华, 李小龙, 范元鸿, 王坤. 振动叶片耦合柔性板强化流体混沌混合与传热研究[J]. 化工学报, 2025, 76(9): 4824-4837.
Jinqi HU, Chunhua MIN, Xiaolong LI, Yuanhong FAN, Kun WANG. Enhanced fluid chaotic mixing and heat transfer with vibrating blade coupled with flexible plate[J]. CIESC Journal, 2025, 76(9): 4824-4837.
| 误差来源 | 测试范围 | 最大不确定度 |
|---|---|---|
| 加热表面温度 | 40~85℃ | ±0.5℃ |
| 环境温度变化 | 27℃ | ±0.5℃ |
| 气流速度 | 1~6 m·s-1 | ±2% |
| 风机功耗 | 0.2~10 W | ±2.3% |
| 噪声水平 | 28~80 dB | ±1 dB |
表1 实验中误差来源和最大不确定度
Table 1 Error sources and maximum uncertainties in the experiment
| 误差来源 | 测试范围 | 最大不确定度 |
|---|---|---|
| 加热表面温度 | 40~85℃ | ±0.5℃ |
| 环境温度变化 | 27℃ | ±0.5℃ |
| 气流速度 | 1~6 m·s-1 | ±2% |
| 风机功耗 | 0.2~10 W | ±2.3% |
| 噪声水平 | 28~80 dB | ±1 dB |
| 参数 | 设置 |
|---|---|
| 压力-速度耦合 | COUPLED |
| 梯度 | 基于最小二乘 |
| 压力、动量、能量 | 二阶迎风 |
| 湍动能、比耗散率 | 二阶迎风 |
| 收敛残差 | 1×10-6 |
| 时间步长 | 1×10-4 |
表2 FLUENT中的关键设置
Table 2 Critical settings in FLUENT
| 参数 | 设置 |
|---|---|
| 压力-速度耦合 | COUPLED |
| 梯度 | 基于最小二乘 |
| 压力、动量、能量 | 二阶迎风 |
| 湍动能、比耗散率 | 二阶迎风 |
| 收敛残差 | 1×10-6 |
| 时间步长 | 1×10-4 |
| 工况 | Tmax,av/℃ | Nuav | fav | η |
|---|---|---|---|---|
| 光滑通道 | 86.9 | 36.6 | 0.24 | 1 |
| VB | 80.7 | 48.1 | 0.31 | 1.2 |
| VBFP | 70.2 | 61.9 | 0.39 | 1.42 |
表3 不同工况加热表面的时间平均结果
Table 3 Time-averaged results of heated surfaces for different cases
| 工况 | Tmax,av/℃ | Nuav | fav | η |
|---|---|---|---|---|
| 光滑通道 | 86.9 | 36.6 | 0.24 | 1 |
| VB | 80.7 | 48.1 | 0.31 | 1.2 |
| VBFP | 70.2 | 61.9 | 0.39 | 1.42 |
| 工况 | 气流速度/(m·s-1) | 温度/℃ | 功耗/W | 噪声/dB | ||
|---|---|---|---|---|---|---|
| 点 1 | 点 2 | 点 3 | ||||
| 光滑通道 | 3 | 82.7 | 65.8 | 65.2 | 2.2 | 55 |
| VB | 3 | 53.5 | 53.9 | 76.2 | 2.5 | 55 |
| VBFP | 3 | 54.9 | 67.5 | 37.3 | 2.6 | 55 |
| 光滑通道 | 4.7 | 67.7 | 58.7 | 58.2 | 9 | 75 |
表4 测温点温度、功耗和噪声水平
Table 4 Temperatures, power consumption and noise levels of measurement point
| 工况 | 气流速度/(m·s-1) | 温度/℃ | 功耗/W | 噪声/dB | ||
|---|---|---|---|---|---|---|
| 点 1 | 点 2 | 点 3 | ||||
| 光滑通道 | 3 | 82.7 | 65.8 | 65.2 | 2.2 | 55 |
| VB | 3 | 53.5 | 53.9 | 76.2 | 2.5 | 55 |
| VBFP | 3 | 54.9 | 67.5 | 37.3 | 2.6 | 55 |
| 光滑通道 | 4.7 | 67.7 | 58.7 | 58.2 | 9 | 75 |
| [1] | 徐百平, 梁瑞凤, 喻慧文, 等. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
| Xu B P, Liang R F, Yu H W, et al. Simulation of intra-cavity distribution mixing under the action of enhanced triangular rotor of twin-screw extruder[J]. CIESC Journal, 2024, 75(3): 858-866. | |
| [2] | Yang N, Xiao Z D, Liu F, et al. Single-phase flow and different-scale mixing in a circumferentially impinging jet distributor coupled with coiled tubes[J]. Chemical Engineering Journal, 2025, 508: 160870. |
| [3] | Bartczak M, Yılmaz T, Sączek M, et al. Characterisation of litre-scale wave-mixed bioreactors using colourimetric method adaptation: mixing performance, flow regime and scale change study[J]. Chemical Engineering Journal, 2025, 509: 161295. |
| [4] | Hong H, Doh I, Jeong J, et al. Mixing enhancement with generation of effective secondary flow parallel to fluid interface in three-dimensional serpentine channel[J]. Results in Engineering, 2024, 24: 103362. |
| [5] | 谷德银, 李昌树, 杨豪, 等. 分形排布式穿流搅拌桨强化流体混沌混合行为[J]. 化工学报, 2024, 75(10): 3498-3506. |
| Gu D Y, Li C S, Yang H, et al. Fluid chaotic mixing behavior intensified by fractal-arranged perforated impeller[J]. CIESC Journal, 2024, 75(10): 3498-3506. | |
| [6] | Li A Q, Yao Y, Tang X Y, et al. Experimental and computational investigation of chaotic advection mixing in laminar rectangular stirred tanks[J]. Chemical Engineering Journal, 2024, 485: 149956. |
| [7] | 刘作华, 周毅林, 熊黠, 等. 逆流桨强化搅拌槽内流体混沌混合及流场结构失稳研究[J]. 化工学报, 2022, 73(1): 222-231. |
| Liu Z H, Zhou Y L, Xiong X, et al. Chaotic mixing intensification and flow field structure instability in stirred reactor by counter-flow pitched-blade turbine[J]. CIESC Journal, 2022, 73(1): 222-231. | |
| [8] | Han Q, Liu Z X, Li W M. Enhanced thermal performance by spatial chaotic mixing in a saw-like microchannel[J]. International Journal of Thermal Sciences, 2023, 186: 108148. |
| [9] | Asano S, Kudo S, Hayashi J I. Chaotic-flow-driven mixing in T- and V-shaped micromixers[J]. Chemical Engineering Journal, 2024, 489: 151183. |
| [10] | Jin G Y, Zheng Q Y, Zhu Z S, et al. Chaotic mixing coupled electromagnetic heating in a tubular reactor[J]. Journal of Food Engineering, 2025, 387: 112348. |
| [11] | Zhang Y, Li X Y, Zhang G, et al. Gas-rigid-flexible compound blade coupling enhanced experimental study on chaotic mixing of multiphase flow[J]. Particuology, 2024, 94: 356-372. |
| [12] | Hasan S I, Küçüka S, Ezan M A. Thermo-fluidic analysis of a single piezofan in longitudinal channel[J]. International Communications in Heat and Mass Transfer, 2021, 129: 105651. |
| [13] | 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157. |
| Li X J, Chen W W, Lu S H. Coupled flow and heat transfer characteristics of piezoelectric fan with cross flow[J]. CIESC Journal, 2020, 71(S1): 149-157. | |
| [14] | Hu J Q, Geng T T, Wang K, et al. Mechanisms for improving fin heat dissipation through the oscillatory airflow induced by vibrating blades[J]. International Journal of Heat and Mass Transfer, 2024, 220: 124965. |
| [15] | Hu J Q, Li X L, Fan Y H, et al. Reducing hot spot temperature through vibrating blade-driven winglets motion: numerical exploration and experimental validation[J]. Applied Thermal Engineering, 2025, 262: 125315. |
| [16] | Li X J, Li J Y, Chen W W, et al. Evolution of flow structure and heat transfer enhancement mechanism in impinging jets excited by piezoelectric fan[J]. International Journal of Heat and Mass Transfer, 2024, 228: 125631. |
| [17] | 张震, 闵春华, 张铭凯, 等. 锯齿形振动风扇对热壁面对流换热效果的影响[J]. 工程热物理学报, 2024, 45(8): 2453-2459. |
| Zhang Z, Min C H, Zhang M K, et al. Effect of serrated vibrating fans on convective heat transfer at heated wall surfaces[J]. Journal of Engineering Thermophysics, 2024, 45(8): 2453-2459. | |
| [18] | Park S H, Oh M H, Kim Y H, et al. Effects of freestream on piezoelectric fan performance[J]. Journal of Fluids and Structures, 2019, 87: 302-318. |
| [19] | Tiwari J, Yeom T. Enhancement of channel-flow convection heat transfer using piezoelectric fans[J]. Applied Thermal Engineering, 2021, 191: 116917. |
| [20] | Kim K, Yeom T. Numerical study on channel-flow convection heat transfer enhancement with piezoelectric fans under various operating conditions[J]. Applied Thermal Engineering, 2023, 219: 119674. |
| [21] | Zhong X L, Chan K C, Fu S C, et al. Enhancement of piezoelectric fan cooling by geometrical arrangements[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123479. |
| [22] | Li X J, Zhang J Z, Tan X M, et al. Enhancing forced-convection heat transfer of a channel surface with piezo-fans[J]. International Journal of Mechanical Sciences, 2022, 227: 107437. |
| [23] | Hu J Y, Jing C J, Zhao Y. Heat transfer enhancement research of dynamical vortex generator in a solar air heater by using the piezoelectric fan array[J]. Heat and Mass Transfer, 2020, 56(3): 825-847. |
| [24] | Gao Z G, Wang Z Q, Bai J H, et al. Dynamic regulation of the thermal performance of the S-CO2 minichannel using a piezoelectric oscillating fin[J]. International Journal of Thermal Sciences, 2023, 193: 108520. |
| [25] | Hu J Q, Fan Y H, Wang X X, et al. Mechanism of hot spot temperature reduction by a new combined system of vibrating blade and vortex generator[J]. International Communications in Heat and Mass Transfer, 2024, 156: 107610. |
| [26] | Ali S, Habchi C, Menanteau S, et al. Three-dimensional numerical study of heat transfer and mixing enhancement in a circular pipe using self-sustained oscillating flexible vorticity generators[J]. Chemical Engineering Science, 2017, 162: 152-174. |
| [27] | Kang M S, Park S G, Dinh C T. Heat transfer enhancement by a pair of asymmetric flexible vortex generators and thermal performance prediction using machine learning algorithms[J]. International Journal of Heat and Mass Transfer, 2023, 200: 123518. |
| [28] | Ren F, Zhang F, Zhu Y N, et al. Enhancing heat transfer from a circular cylinder undergoing vortex induced vibration based on reinforcement learning[J]. Applied Thermal Engineering, 2024, 236: 121919. |
| [29] | Sun X, Suh C S, Sun C C, et al. Vortex-induced vibration of a flexible splitter plate attached to a square cylinder in laminar flow[J]. Journal of Fluids and Structures, 2021, 101: 103206. |
| [30] | Sun X, Ye Z H, Li J J, et al. Forced convection heat transfer from a circular cylinder with a flexible fin[J]. International Journal of Heat and Mass Transfer, 2019, 128: 319-334. |
| [31] | de Boer A, van Zuijlen A H, Bijl H. Review of coupling methods for non-matching meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(8): 1515-1525. |
| [32] | Rao K R, Kim D N, Hwang J J. Fast Fourier Transform: Algorithms and Applications[M]. Dordrecht: Springer, 2010: 170. |
| [33] | Cao L Y. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43-50. |
| [34] | Grassberger P, Procaccia I. Characterization of strange attractors[J]. Physical Review Letters, 1983, 50(5): 346-349. |
| [35] | Li A Q, Yao Y, Zhang X, et al. On the chaotic characteristics and turbulent mixing mechanisms of elliptical unbaffled stirred tanks[J]. AIChE Journal, 2025, 71(7): e18827. |
| [36] | Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317. |
| [1] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [2] | 臧子晴, 李修真, 谈莹莹, 刘晓庆. 分凝器对两级分离自复叠制冷循环特性影响研究[J]. 化工学报, 2025, 76(S1): 17-25. |
| [3] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [4] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [5] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [6] | 李银龙, 刘国强, 晏刚. 分馏与闪蒸分离耦合自复叠制冷循环性能分析[J]. 化工学报, 2025, 76(S1): 26-35. |
| [7] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [8] | 刘豪, 王林, 丁昊, 耿嘉怡. R1150+R1234ze(E)二元体系223.15~253.15 K汽液相平衡研究[J]. 化工学报, 2025, 76(S1): 1-8. |
| [9] | 杨语晴, 李银龙, 晏刚. 采用低GWP制冷剂的级联加热自复叠高温热泵循环热力学分析[J]. 化工学报, 2025, 76(S1): 43-53. |
| [10] | 冯彪, 张昭, 李思琪, 王秉睿, 吴红颖, 史淼, 王丹, 马素霞. 适配环保制冷剂R290的阻燃剂性能研究[J]. 化工学报, 2025, 76(S1): 462-468. |
| [11] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [12] | 丁昊, 王林, 刘豪. R290/R245fa汽液相平衡混合规则对比研究[J]. 化工学报, 2025, 76(S1): 9-16. |
| [13] | 罗海梅, 王泓, 孙照明, 尹艳华. 同向双螺杆传热系数计算模型的分析与验证[J]. 化工学报, 2025, 76(9): 4809-4823. |
| [14] | 郭旭, 贾继宁, 姚克俭. 基于优化CNN-BiLSTM神经网络的间歇精馏过程建模[J]. 化工学报, 2025, 76(9): 4613-4629. |
| [15] | 周航, 张斯婧, 刘剑, 张小松. 小通道内非共沸工质流动沸腾换热数值分析[J]. 化工学报, 2025, 76(8): 3864-3872. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号