化工学报 ›› 2025, Vol. 76 ›› Issue (10): 4961-4975.DOI: 10.11949/0438-1157.20250387
李怡1(
), 王纪元1, 潘旭海1,2(
), 汪志雷1,2(
), 华敏1
收稿日期:2025-04-13
修回日期:2025-05-07
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
潘旭海,汪志雷
作者简介:李怡(2001—),女,硕士研究生,202361201129@njtech.edu.cn
基金资助:
Yi LI1(
), Jiyuan WANG1, Xuhai PAN1,2(
), Zhilei WANG1,2(
), Min HUA1
Received:2025-04-13
Revised:2025-05-07
Online:2025-10-25
Published:2025-11-25
Contact:
Xuhai PAN, Zhilei WANG
摘要:
碱性电解水制氢技术在规模化应用过程中仍存在组件腐蚀、管道结构劣化等可能引发氢氧混合和氢气泄漏的风险,对系统运行安全构成威胁。通过分析碱性电解水制氢系统的结构组成和工作机理,识别出影响制氢安全的关键组件和原因。针对电极催化剂在高电流密度下活性位点不足和稳定性差的问题,提出采用三维电极结构设计或者构筑亲水疏气界面的方法。对于隔膜材料因亲水性不足和机械强度缺陷引发的氢氧混合风险,亟需开发性能优异的隔膜材料。本文还揭示了各操作参数和波动工况对气体纯度的影响机理,指出当前通过调整单一参数提高气体纯度方法的不足。为工业大规模碱性电解水制氢安全提供理论支撑。
中图分类号:
李怡, 王纪元, 潘旭海, 汪志雷, 华敏. 碱性电解水制氢安全研究进展[J]. 化工学报, 2025, 76(10): 4961-4975.
Yi LI, Jiyuan WANG, Xuhai PAN, Zhilei WANG, Min HUA. Research progress on safety of hydrogen production by alkaline electrolysis of water[J]. CIESC Journal, 2025, 76(10): 4961-4975.
图18 不同电解堆数量在交替循环模式下HTO含量随时间的变化[79]
Fig.18 Time dependent variation of HTO content under alternating cycle mode with different numbers of electrolysis stacks[79]
| [1] | 朱朱, 王杰, 高丽萍, 等. 风光制氢一体化项目规模配置研究[J]. 水力发电, 2025, 51(2): 103-107. |
| Zhu Z, Wang J, Gao L P, et al. Research on capacity configuration of wind/solar-to-hydrogen integrated project[J]. Water Power, 2025, 51(2): 103-107. | |
| [2] | Ajanovic A, Sayer M, Haas R. The economics and the environmental benignity of different colors of hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(57): 24136-24154. |
| [3] | 刘柄呈. 输气管道末端场站掺氢技术分析[J]. 石化技术, 2024, 31(7): 107-109. |
| Liu B C. Analysis of hydrogen mixing technology in terminal station of gas pipeline[J]. Petrochemical Industry Technology, 2024, 31(7): 107-109. | |
| [4] | Ewan B C R, Allen R W K. A figure of merit assessment of the routes to hydrogen[J]. International Journal of Hydrogen Energy, 2005, 30(8): 809-819. |
| [5] | Anand C, Chandraja B, Nithiya P, et al. Green hydrogen for a sustainable future: a review of production methods, innovations, and applications[J]. International Journal of Hydrogen Energy, 2025, 111: 319-341. |
| [6] | Dash S, Arjun Singh K, Jose S, et al. Advances in green hydrogen production through alkaline water electrolysis: a comprehensive review[J]. International Journal of Hydrogen Energy, 2024, 83: 614-629. |
| [7] | Agrawal D, Mahajan N, Singh S A, et al. Green hydrogen production pathways for sustainable future with net zero emissions[J]. Fuel, 2024, 359: 130131. |
| [8] | 曾升, 李进, 王鑫, 等. 中国氢能利用技术进展及前景展望[J]. 电源技术, 2022, 46(7): 716-722. |
| Zeng S, Li J, Wang X, et al. Progress and prospect of hydrogen energy utilization technology in China[J]. Chinese Journal of Power Sources, 2022, 46(7): 716-722. | |
| [9] | 黄丹极. 碱性电解水制氢设备多物理场建模及系统应用[D]. 武汉: 华中科技大学, 2024. |
| Huang D J. Multi-physical field modeling and system application of alkaline electrolyzed water hydrogen production equipment[D]. Wuhan: Huazhong University of Science and Technology, 2024. | |
| [10] | 周钧, 吴文宏. 压滤式电解水制氢电解槽极板腐蚀机理的研究[J]. 舰船科学技术, 2006, 28(2): 34-37. |
| Zhou J, Wu W H. Study of the corrosion mechanism for electrolyser plate electrode[J]. Ship Science and Technology, 2006, 28(2): 34-37. | |
| [11] | Huang D J, Xiong B Y, Fang J K, et al. A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell[J]. Applied Energy, 2022, 314: 118987. |
| [12] | 聂知力. 新型碱性电解槽实验研究[D]. 北京: 北京化工大学, 2023. |
| Nie Z L. Experimental study on new alkaline electrolyzer[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| [13] | Emam A S, Hamdan M O, Abu-Nabah B A, et al. A review on recent trends, challenges, and innovations in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024, 64: 599-625. |
| [14] | López-Fernández E, Sacedón C G, Gil-Rostra J, et al. Recent advances in alkaline exchange membrane water electrolysis and electrode manufacturing[J]. Molecules, 2021, 26(21): 6326. |
| [15] | Sebbahi S, Assila A, Alaoui Belghiti A, et al. A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 82: 583-599. |
| [16] | Wan L, Xu Z A, Xu Q, et al. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis[J]. Energy & Environmental Science, 2023, 16(4): 1384-1430. |
| [17] | Mazloomi S K, Sulaiman N. Influencing factors of water electrolysis electrical efficiency[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 4257-4263. |
| [18] | Muthiah M, Elnashar M, Afzal W, et al. Safety assessment of hydrogen production using alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024, 84: 803-821. |
| [19] | Song D, Hong D, Kwon Y, et al. Highly porous Ni-P electrode synthesized by an ultrafast electrodeposition process for efficient overall water electrolysis[J]. Journal of Materials Chemistry A, 2020, 8(24): 12069-12079. |
| [20] | 潘伟滔, 张玉, 周阳, 等. 氢气制备技术发展现状分析及展望[J]. 煤气与热力, 2022, 42(6): 67-74. |
| Pan W T, Zhang Y, Zhou Y, et al. Analysis and prospect of hydrogen production technologies[J]. Gas & Heat, 2022, 42(6): 67-74. | |
| [21] | Liu Y, Huang Y, Zhou S Q, et al. Synergistic regulation of Pt clusters on porous support by Mo and P for robust bifunctional hydrogen electrocatalysis[J]. Inorganic Chemistry, 2023, 62(22): 8719-8728. |
| [22] | He L X, Wang N, Sun L K, et al. Heterostructure WC/Ni/Cu nanorod array towards ultra-long hydrogen evolution durability at room temperature and industrial conditions[J]. Chemical Engineering Journal, 2024, 500: 157271. |
| [23] | Wu H M, Feng C Q, Zhang L, et al. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis[J]. Electrochemical Energy Reviews, 2021, 4(3): 473-507. |
| [24] | 郭雅婷, 邓甜音, 刘艳莹, 等. 碱性电解水制氢隔膜和阳极材料性能研究[J]. 综合智慧能源, 2022, 44(5): 64-68. |
| Guo Y T, Deng T Y, Liu Y Y, et al. Research on the performance of membranes and anode materials in alkaline waterelectrolysis[J]. Integrated Intelligent Energy, 2022, 44(5): 64-68. | |
| [25] | 葛书强, 杨中桂, 白洁, 等. 可再生能源制氢技术及其主要设备发展现状及展望[J]. 太原理工大学学报, 2024, 55(5): 759-787. |
| Ge S Q, Yang Z G, Bai J, et al. Development status and prospect of hydrogen production technology by renewable energy and its main equipment[J]. Journal of Taiyuan University of Technology, 2024, 55(5): 759-787. | |
| [26] | 王逍妍. 镍基多元金属催化电极的制备与析氢稳定性研究[D]. 北京: 北京化工大学, 2024. |
| Wang X Y. Preparation and hydrogen evolution stability of nickel-based multi-metal catalytic electrode[D]. Beijing: Beijing University of Chemical Technology, 2024. | |
| [27] | Gravelle J, Hihn J Y, Pollet B G. Power ultrasound as performance enhancer for alkaline water electrolysis: a review[J]. International Journal of Hydrogen Energy, 2025, 100: 428-441. |
| [28] | Zhang E D, Song W. Review: self-supporting electrocatalysts for HER in alkaline water electrolysis[J]. Journal of the Electrochemical Society, 2024, 171(5): 052503. |
| [29] | 唐阳. 铁钴镍基碱性电解水催化剂的设计与性能研究[D]. 重庆: 西南大学, 2023. |
| Tang Y. Design and performance study of Fe-Co-Ni-based alkaline electrolytic water catalyst[D]. Chongqing: Southwest University, 2023. | |
| [30] | Schalenbach M, Zeradjanin A R, Kasian O, et al. A perspective on low-temperature water electrolysis-challenges in alkaline and acidic technology[J]. International Journal of Electrochemical Science, 2018, 13(2): 1173-1226. |
| [31] | Song W Y, Xia C F, Zaman S, et al. Advances in stability of NiFe-based anodes toward oxygen evolution reaction for alkaline water electrolysis[J]. Small, 2024, 20(48): 2406075. |
| [32] | Hoang A L, Balakrishnan S, Hodges A, et al. High-performing catalysts for energy-efficient commercial alkaline water electrolysis[J]. Sustainable Energy & Fuels, 2023, 7(1): 31-60. |
| [33] | Niu S, Jiang W J, Wei Z X, et al. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation[J]. Journal of the American Chemical Society, 2019, 141(17): 7005-7013. |
| [34] | Zhang J, Wang T, Liu P, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics[J]. Nature Communications, 2017, 8: 15437. |
| [35] | 龚艺. 碳包覆镍钼基多级结构材料的电解水性能及其稳定性研究[D]. 北京: 北京化工大学, 2019. |
| Gong Y. Study on electrolytic water performance and stability of carbon-coated Ni-Mo-based multi-level structural materials[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
| [36] | Fei H L, Yang Y, Peng Z W, et al. Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8083-8087. |
| [37] | Liu Y P, Li G D, Yuan L, et al. Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction[J]. Nanoscale, 2015, 7(7): 3130-3136. |
| [38] | 魏申琦. 高性能三维石墨烯基电催化剂的构筑及其析氢性能的研究[D]. 上海: 华东师范大学, 2024. |
| Wei S Q. Construction of high performance three-dimensional graphene-based electrocatalyst and its hydrogen evolution performance[D]. Shanghai: East China Normal University, 2024. | |
| [39] | Yang H Y, Driess M, Menezes P W. Self-supported electrocatalysts for practical water electrolysis[J]. Advanced Energy Materials, 2021, 11(39): 2102074. |
| [40] | 叶荣榕, 曹圆圆, 周丽娜, 等. 三维自支撑电催化析氢催化剂的研究进展[J]. 中国科学: 化学, 2025, 55(3): 636-660. |
| Ye R R, Cao Y Y, Zhou L N, et al. Self-supported electrocatalysts for electrocatalytic hydrogen evolution reaction[J]. Scientia Sinica Chimica, 2025, 55(3): 636-660. | |
| [41] | Zhu Z X, Lin Y X, Fang P, et al. Orderly nanodendritic nickel substitute for raney nickel catalyst improving alkali water electrolyzer[J]. Advanced Materials, 2024, 36(1): 2307035. |
| [42] | Wang J Y, Ji L L, Zuo S S, et al. Hierarchically structured 3D integrated electrodes by galvanic replacement reaction for highly efficient water splitting[J]. Advanced Energy Materials, 2017, 7(14): 1700107. |
| [43] | Xu W W, Lu Z Y, Sun X M, et al. Superwetting electrodes for gas-involving electrocatalysis[J]. Accounts of Chemical Research, 2018, 51(7): 1590-1598. |
| [44] | Li H Y, Chen S M, Zhang Y, et al. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting[J]. Nature Communications, 2018, 9(1): 2452. |
| [45] | Shan X Y, Liu P J, Mu H R, et al. An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoS x chalcogel for overall water splitting[J]. Angewandte Chemie International Edition, 2020, 59(4): 1659-1665. |
| [46] | Chen Y, Xu Z B, Chen G Z. Nano-scale engineering of heterojunction for alkaline water electrolysis[J]. Materials, 2024, 17(1): 199. |
| [47] | 石航博. 碱水制氢电解槽的开发与流场仿真及优化研究[D]. 北京: 北京化工大学, 2023. |
| Shi H B. Development, flow field simulation and optimization of electrolyzer for hydrogen production from alkaline water[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| [48] | 彭富兵, 焦晓宁. 隔膜法制氢电解槽用新型隔膜的研制及其应用[J]. 纺织学报, 2008, 29(12): 42-45. |
| Peng F B, Jiao X N. Development and application of new diaphragms used in electrolyser for hydrogen preparation[J]. Journal of Textile Research, 2008, 29(12): 42-45. | |
| [49] | 刘明昊, 解辉, 张振扬. 制氢用碱性水电解槽隔膜材料研究进展[J]. 化工新型材料, 2023, 51(S2): 561-564. |
| Liu M H, Xie H, Zhang Z Y. Research progress of diaphragm materials for alkaline water electrolyzer for hydrogen production[J]. New Chemical Materials, 2023, 51(S2): 561-564. | |
| [50] | 高溢霖, 闫俊, 高原, 等. 聚苯硫醚织物亲水改性及其在碱性电解池中应用[J]. 纺织高校基础科学学报, 2024, 37(6): 83-89. |
| Gao Y L, Yan J, Gao Y, et al. Hydrophilic modification of polyphenylene sulfide fabrics and its application in alkaline electrolytic cell[J]. Basic Sciences Journal of Textile Universities, 2024, 37(6): 83-89. | |
| [51] | 谭策. 聚苯硫醚复合纤维膜的制备及其性能研究[D]. 天津: 天津工业大学, 2021. |
| Tan C. Preparation and properties of polyphenylene sulfide composite fiber membrane[D]. Tianjin: Tianjin Polytechnic University, 2021. | |
| [52] | Gao Y, Zhou X H, Zhang M L, et al. Polyphenylene sulfide-based membranes: recent progress and future perspectives[J]. Membranes, 2022, 12(10): 924. |
| [53] | 李颖娜. 低温等离子体对PPS接枝聚合的研究[D]. 天津: 天津工业大学, 2006. |
| Li Y N. Study on grafting polymerization of PPS by low temperature plasma[D]. Tianjin: Tianjin Polytechnic University, 2006. | |
| [54] | 林雅莉, 孙元, 邓新华. 磺化反应改善PPS非织毡亲水性的研究[J]. 天津工业大学学报, 2005, 24(2): 58-60. |
| Lin Y L, Sun Y, Deng X H. Hydrophilic property of PPS non-woven improved by using sulphuration[J]. Journal of Tianjin Institute of Textile Science and Technology, 2005, 24(2): 58-60. | |
| [55] | 徐志成, 王乐译, 张伟政, 等. 氯磺酸磺化PPS非织毡薄膜及表征[J]. 膜科学与技术, 2016, 36(5): 68-71. |
| Xu Z C, Wang L Y, Zhang W Z, et al. Sulphuration of PPS non-woven felt thin film by chlorosulfonic acid and characterization[J]. Membrane Science and Technology, 2016, 36(5): 68-71. | |
| [56] | 宋子龙. 碱性水电解槽用聚砜隔膜的研制[D]. 长沙: 湖南大学, 2018. |
| Song Z L. Development of polysulfone diaphragm for alkaline water electrolyzer[D]. Changsha: Hunan University, 2018. | |
| [57] | 王志杰, 杨光, 马含冰, 等. 壳聚糖改性聚苯硫醚碱性水电解隔膜的制备与性能研究[J]. 棉纺织技术, 2024, 52(12): 1-6. |
| Wang Z J, Yang G, Ma H B, et al. Preparation and performance study of chitosan-modified polyphenylene sulfide diaphragm for alkaline water electrolysis[J]. Cotton Textile Technology, 2024, 52(12): 1-6. | |
| [58] | Wu Y T, Xu G Q, Zhou J B, et al. Research progress of the porous membranes in alkaline water electrolysis for green hydrogen production[J]. Chemical Engineering Journal, 2025, 505: 159291. |
| [59] | Yu J H, Zhu Q Q, Ma W L, et al. Hydrophilic chitosan-doped composite diaphragm reducing gas permeation for alkaline water electrolysis producing hydrogen[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 1394-1403. |
| [60] | Kuleshov N V, Kuleshov V N, Dovbysh S A, et al. Development and performances of a 0.5 kW high-pressure alkaline water electrolyser[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29441-29449. |
| [61] | Liu L P, Wang J Y, Ren Z B, et al. Ultrathin reinforced composite separator for alkaline water electrolysis: comprehensive performance evaluation[J]. International Journal of Hydrogen Energy, 2023, 48(62): 23885-23893. |
| [62] | Lee H I, Dung D T, Kim J, et al. The synthesis of a Zirfon-type porous separator with reduced gas crossover for alkaline electrolyzer[J]. International Journal of Energy Research, 2020, 44(3): 1875-1885. |
| [63] | 尤岩. 碱性水电解用聚砜隔膜的制备和研究[D]. 天津: 天津大学, 2010. |
| You Y. Preparation and study of polysulfone diaphragm for alkaline water electrolysis[D]. Tianjin: Tianjin University, 2010. | |
| [64] | 易华. 石油化工项目中氢气爆炸的预防控制[J]. 化工管理, 2021(6): 106-107. |
| Yi H. Explore the prevention and control of hydrogen explosion in petrochemical projects[J]. Chemical Enterprise Management, 2021(6): 106-107. | |
| [65] | Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources[J]. Solar Energy, 2005, 78(5): 661-669. |
| [66] | Schalenbach M, Carmo M, Fritz D L, et al. Pressurized PEM water electrolysis: efficiency and gas crossover[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14921-14933. |
| [67] | 李洋洋, 邓欣涛, 古俊杰, 等. 碱性水电解制氢系统建模综述及展望[J]. 汽车工程, 2022, 44(4): 567-582. |
| Li Y Y, Deng X T, Gu J J, et al. Comprehensive review and prospect of the modeling of alkaline water electrolysis system for hydrogen production[J]. Automotive Engineering, 2022, 44(4): 567-582. | |
| [68] | 梁峰. 降低可再生能源水电解制氢时氧中氢安全风险的措施[J]. 安全、健康和环境, 2024, 24(8): 11-16. |
| Liang F. Measures to reduce the safety risk of hydrogen in oxygen during hydrogen production by hydrogen electrolysis from renewable energy sources[J]. Safety Health & Environment, 2024, 24(8): 11-16. | |
| [69] | 牛萌, 洪振鹏, 李蓓, 等. 考虑制氢效率提升的风电制氢系统优化控制策略[J]. 太阳能学报, 2023, 44(9): 366-376. |
| Niu M, Hong Z P, Li B, et al. Optimal control strategy of wind power to hydrogen system considering electrolyzer efficiency improvement[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 366-376. | |
| [70] | 黄超, 李航, 周利, 等. 基于PCA-ANN的碱性电解水系统气体纯度预测[J]. 华东理工大学学报(自然科学版), 2023, 49(3): 305-314. |
| Huang C, Li H, Zhou L, et al. Gas purity prediction of alkaline water electrolysis system based on PCA-ANN[J]. Journal of East China University of Science and Technology, 2023, 49(3): 305-314. | |
| [71] | Kirati S K, Hammoudi M, Mousli I M A. Hybrid energy system for hydrogen production in the Adrar region (Algeria): production rate and purity level[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3378-3393. |
| [72] | Haug P, Kreitz B, Koj M, et al. Process modelling of an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2017, 42(24): 15689-15707. |
| [73] | Haug P, Koj M, Turek T. Influence of process conditions on gas purity in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9406-9418. |
| [74] | 尹诗斌, 蒋文杰, 文欢. 碱性电解槽制氢技术的研究现状及发展趋势[J]. 西华大学学报(自然科学版), 2025, 44(1): 168-180. |
| Yin S B, Jiang W J, Wen H. Research status and development prospects of hydrogen production technology in alkaline electrolyzer[J]. Journal of Xihua University (Natural Science Edition), 2025, 44(1): 168-180. | |
| [75] | Hu S, Guo B, Ding S L, et al. A comprehensive review of alkaline water electrolysis mathematical modeling[J]. Applied Energy, 2022, 327: 120099. |
| [76] | van Linden N, Spanjers H, van Lier J B. Application of dynamic current density for increased concentration factors and reduced energy consumption for concentrating ammonium by electrodialysis[J]. Water Research, 2019, 163: 114856. |
| [77] | 张腾飞. 碱性水电解制氢系统的建模分析与设计优化[D]. 北京: 北京化工大学, 2023. |
| Zhang T F. Modeling analysis and design optimization of hydrogen production system by alkaline water electrolysis[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| [78] | 郭育菁. 一种碱水制氢电解槽结构设计及性能优化[D]. 北京: 北京化工大学, 2020. |
| Guo Y J. Structure design and performance optimization of an electrolyzer for hydrogen production from alkaline water[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
| [79] | Oikonomidis S, Ramdin M, Moultos O A, et al. Transient modelling of a multi-cell alkaline electrolyzer for gas crossover and safe system operation[J]. International Journal of Hydrogen Energy, 2023, 48(88): 34210-34228. |
| [80] | Sánchez M, Amores E, Rodríguez L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20332-20345. |
| [81] | Huang P H, Kuo J K, Wu Z D. Applying small wind turbines and a photovoltaic system to facilitate electrolysis hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8514-8524. |
| [82] | 王庆斌, 薛贺来, 马强. 中压SPE水电解制氢装置研究[C]//中国动力工程学会工业气体专业委员会2009年技术论坛论文集. 2010: 154-158. |
| Wang Q B, Xue H L, Ma Q. Research on medium woltage SPE water electrolysis hydrogen production device[C]//Proceedings of the 2009 Technical Forum of the Industrial Gas Professional Committee of the Chinese Society of Power Engineering. 2010: 154-158. | |
| [83] | Janssen H, Bringmann J C, Emonts B, et al. Safety-related studies on hydrogen production in high-pressure electrolysers[J]. International Journal of Hydrogen Energy, 2004, 29(7): 759-770. |
| [84] | Jang D, Cho H S, Kang S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Applied Energy, 2021, 287: 116554. |
| [85] | Roy A, Watson S, Infield D. Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers[J]. International Journal of Hydrogen Energy, 2006, 31(14): 1964-1979. |
| [86] | Lee J W, Lee J H, Lee C, et al. Cellulose nanocrystals-blended zirconia/polysulfone composite separator for alkaline electrolyzer at low electrolyte contents[J]. Chemical Engineering Journal, 2022, 428: 131149. |
| [87] | Schalenbach M, Lueke W, Stolten D. Hydrogen diffusivity and electrolyte permeability of the zirfon PERL separator for alkaline water electrolysis[J]. Journal of the Electrochemical Society, 2016, 163(14): F1480-F1488. |
| [88] | Zhang C, Wang J Y, Ren Z B, et al. Wind-powered 250 kW electrolyzer for dynamic hydrogen production: a pilot study[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34550-34564. |
| [89] | Brauns J, Turek T. Alkaline water electrolysis powered by renewable energy: a review[J]. Processes, 2020, 8(2): 248. |
| [90] | Chi J, Yu H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394. |
| [91] | Dobó Z, Palotás Á B. Impact of the voltage fluctuation of the power supply on the efficiency of alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2016, 41(28): 11849-11856. |
| [92] | Ursúa A, San Martín I, Barrios E L, et al. Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14952-14967. |
| [93] | 苏昕. 输入功率波动条件下PEM电解制氢性能研究[D]. 乌鲁木齐: 新疆农业大学, 2023. |
| Su X. Study on hydrogen production performance of PEM electrolysis under input power fluctuation[D]. Urumqi: Xinjiang Agricultural University, 2023. | |
| [94] | 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472. |
| Shen X J, Nie C Y, Lv H. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472. | |
| [95] | 宁楠. 水电解制氢装置宽功率波动适应性研究[J]. 舰船科学技术, 2017, 39(11): 133-136. |
| Ning N. Research on hydrogen generation system by water electrolysis under wide power fluctuation[J]. Ship Science and Technology, 2017, 39(11): 133-136. | |
| [96] | Zhou Y J, Zhang H, Liu L X, et al. Effect of electrolyte circulation on hydrogen-in-oxygen in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024, 82: 143-149. |
| [1] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [2] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [3] | 彭建斌, 李明, 谢军龙, 陈建业. 液氢接收终端液氢泄漏扩散及爆炸超压研究[J]. 化工学报, 2025, 76(S1): 453-461. |
| [4] | 冯彪, 张昭, 李思琪, 王秉睿, 吴红颖, 史淼, 王丹, 马素霞. 适配环保制冷剂R290的阻燃剂性能研究[J]. 化工学报, 2025, 76(S1): 462-468. |
| [5] | 张建民, 何美贵, 贾万鑫, 赵静, 金万勤. 聚氧化乙烯/冠醚共混膜及其二氧化碳分离性能[J]. 化工学报, 2025, 76(9): 4862-4871. |
| [6] | 赵维, 邢文乐, 韩朝旭, 袁兴中, 蒋龙波. g-C3N4基非金属异质结光催化降解水中有机污染物的研究进展[J]. 化工学报, 2025, 76(9): 4752-4769. |
| [7] | 王杰, 林渠成, 张先明. 基于分解算法的混合气体多级膜分离系统全局优化[J]. 化工学报, 2025, 76(9): 4670-4682. |
| [8] | 王钰, 冯英楠, 王涛, 赵之平. 原位生长构筑纳米复合纳滤膜:膜制备与应用[J]. 化工学报, 2025, 76(9): 4723-4736. |
| [9] | 佟丽丽, 陈英, 艾敏华, 舒玉美, 张香文, 邹吉军, 潘伦. ZnO/WO3异质结光催化环烯烃[2+2]环加成制备高能量密度燃料[J]. 化工学报, 2025, 76(9): 4882-4892. |
| [10] | 钱慧慧, 王文婕, 陈文尧, 周兴贵, 张晶, 段学志. 聚丙烯定向转化制芳烃:金属-分子筛协同催化机制[J]. 化工学报, 2025, 76(9): 4838-4849. |
| [11] | 巢欣旖, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 甲醇和乙酸甲酯一步法制丙酸甲酯催化剂的可控制备与性能调控[J]. 化工学报, 2025, 76(8): 4030-4041. |
| [12] | 张荟钦, 赵泓竣, 付正军, 庄力, 董凯, 贾添智, 曹雪丽, 孙世鹏. 纳滤膜在离子型稀土浸出液提浓中的应用研究[J]. 化工学报, 2025, 76(8): 4095-4107. |
| [13] | 范夏雨, 孙建辰, 李可莹, 姚馨雅, 商辉. 机器学习驱动液态有机储氢技术的系统优化[J]. 化工学报, 2025, 76(8): 3805-3821. |
| [14] | 杨宁, 李皓男, LIN Xiao, GEORGIADOU Stella, LIN Wen-Feng. 从塑料废弃物到能源催化剂:塑料衍生碳@CoMoO4复合材料在电解水析氢反应中的应用[J]. 化工学报, 2025, 76(8): 4081-4094. |
| [15] | 陆学瑞, 周帼彦, 方琦, 俞孟正, 张秀成, 涂善东. 固体氧化物燃料电池外重整器积炭效应数值模拟研究[J]. 化工学报, 2025, 76(7): 3295-3304. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号