化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5697-5708.DOI: 10.11949/0438-1157.20250481
• 专栏:能源利用过程中的多相流与传热 • 上一篇
曾育峰1,2,3(
), 何玉荣1,2,3, 王天宇1,2(
)
收稿日期:2025-05-06
修回日期:2025-06-23
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
王天宇
作者简介:曾育峰(2001—),男,博士研究生,2318181615@qq.com
基金资助:
Yufeng ZENG1,2,3(
), Yurong HE1,2,3, Tianyu WANG1,2(
)
Received:2025-05-06
Revised:2025-06-23
Online:2025-11-25
Published:2025-12-19
Contact:
Tianyu WANG
摘要:
随着空间核动力技术的进步,钠冷快堆成为空间核动力系统理想能源方案,然而微重力下液态金属钠沸腾传热机制不清晰,且缺少防止传热恶化的有效方法。围绕微重力下空间钠冷快堆中液钠流动沸腾问题开展了数值模拟研究,采用双流体模型,对比了常重力与微重力下液钠流动沸腾传热性能,并分析了入口流速以及入口过冷度对微重力下竖直管道中液钠沸腾传热性能的影响。结果表明,与常重力相比,微重力下液钠沸腾传热性能下降,沸腾起始时间提前,更容易发生传热恶化;增加入口流速与过冷度能改善微重力下液钠沸腾传热性能,当入口流速为2.0 m·s-1,入口过冷度为300 K时,未发生传热恶化。研究结果解释了微重力下液钠流动沸腾传热特性,为空间钠冷快堆一回路微重力下的安全设计提供了理论指导。
中图分类号:
曾育峰, 何玉荣, 王天宇. 微重力下液态金属钠沸腾传热特性模拟研究[J]. 化工学报, 2025, 76(11): 5697-5708.
Yufeng ZENG, Yurong HE, Tianyu WANG. Simulation research on the boiling heat transfer characteristics of liquid sodium under microgravity[J]. CIESC Journal, 2025, 76(11): 5697-5708.
| 物理量 | 数值 | |
|---|---|---|
| 竖直通道 | x、y方向尺寸/m | 0.0066、1.76 |
| x、y方向网格数/个 | 10、1800 | |
| 通道宽度D/m | 0.0066 | |
| 加热段长度L1/m | 1 | |
| 绝热段长度L2/m | 0.38 | |
| 液态钠 | 液钠比定压热容Cpl /(J·kg-1·K-1) | 1260 |
| 液钠密度ρl /(kg·m-3) | 780 | |
| 液钠热导率λl /(W·m-1·K-1) | 55.03 | |
| 液钠黏度μl /(Pa·s) | 0.00019 | |
| 相变潜热∆Hg/(kJ·kg-1) | 3881.3 | |
| 钠蒸气 | 钠蒸气比定压热容Cpv/(J·kg-1·K-1) | 2560 |
| 钠蒸气密度ρv/(kg·m-3) | 0.281 | |
| 钠蒸气热导率λv/(W·m-1·K-1) | 0.048 | |
| 钠蒸气黏度μv/(Pa·s) | 0.000022 | |
表1 模型参数设置[32-33]
Table 1 Parameters used in the simulation[32-33]
| 物理量 | 数值 | |
|---|---|---|
| 竖直通道 | x、y方向尺寸/m | 0.0066、1.76 |
| x、y方向网格数/个 | 10、1800 | |
| 通道宽度D/m | 0.0066 | |
| 加热段长度L1/m | 1 | |
| 绝热段长度L2/m | 0.38 | |
| 液态钠 | 液钠比定压热容Cpl /(J·kg-1·K-1) | 1260 |
| 液钠密度ρl /(kg·m-3) | 780 | |
| 液钠热导率λl /(W·m-1·K-1) | 55.03 | |
| 液钠黏度μl /(Pa·s) | 0.00019 | |
| 相变潜热∆Hg/(kJ·kg-1) | 3881.3 | |
| 钠蒸气 | 钠蒸气比定压热容Cpv/(J·kg-1·K-1) | 2560 |
| 钠蒸气密度ρv/(kg·m-3) | 0.281 | |
| 钠蒸气热导率λv/(W·m-1·K-1) | 0.048 | |
| 钠蒸气黏度μv/(Pa·s) | 0.000022 | |
图5 不同重力条件下加热段末端截面平均温度变化曲线
Fig.5 Average temperature variation curve of the end cross-section in the heating section under different gravity conditions
图7 不同入口流速下壁面温度及表面传热系数分布
Fig.7 Distribution of wall temperature and surface heat transfer coefficient along the channel under different inlet velocities
图9 不同入口流速下截面平均空泡份额和沸腾起始及传热恶化发生时间
Fig.9 Cross-sectional average void fraction and time of occurrence for boiling inception and heat transfer deterioration under different inlet velocities
图12 不同入口过冷度下截面平均空泡份额和沸腾起始及传热恶化发生时间
Fig.12 Cross-sectional average void fraction and time of occurrence for boiling inception and heat transfer deterioration under different inlet subcooling
| [1] | Mason L S. A comparison of fission power system options for lunar and mars surface applications[C] //AIP Conference Proceedings. American Institute of Physics, 2006, 813(1): 270-280. |
| [2] | Angelo J.A. Space Nuclear Power[M]. Malabar, Florida: Orbit Book Company Inc., 1985. |
| [3] | 郝鹏飞. 基于OpenMC的空间核反应堆临界及安全分析[D]. 抚州: 东华理工大学, 2022. |
| Hao P F. Criticality and safety analysis of space nuclear reactor based on OpenMC[D]. Fuzhou: East China University of Technology, 2022. | |
| [4] | 张明, 蔡晓东, 杜青, 等. 核反应堆空间应用研究[J]. 航天器工程, 2013, 22(6): 119-126. |
| Zhang M, Cai X D, Du Q, et al. Research on nuclear reactors in space application[J]. Spacecraft Engineering, 2013, 22(6): 119-126. | |
| [5] | Maidana C O. Thermo-Magnetic Systems for Space Nuclear Reactors[M]. Springer International Publishing, 2014. |
| [6] | Somani B K, Desai M, Traxer O, et al. Stone-free rate (SFR): a new proposal for defining levels of SFR[J]. Urolithiasis, 2014, 42(2): 95. |
| [7] | Zhao H H, Zhang H B, Mousseau V A, et al. Improving SFR economics through innovations from thermal design and analysis aspects[J]. Nuclear Engineering and Design, 2009, 239(6): 1042-1055. |
| [8] | Hou Y, Wang L, Zhang K, et al. Experimental study on boiling two-phase of liquid sodium along a 7-rod bundle (part Ⅰ): Pressure drop characteristics[J]. Annals of Nuclear Energy, 2023, 183: 109678. |
| [9] | Tsige-Tamirat H, Perez-Martin S, Pfrang W, et al. A review of models for the sodium boiling phenomena in sodium-cooled fast reactor subassemblies[J]. Journal of Nuclear Engineering and Radiation Science, 2022, 8(1): 011305. |
| [10] | Vanderhaegen M, Belguet A L. A review on sodium boiling phenomena in reactor systems[J]. Nuclear Science and Engineering, 2014, 176(2): 115-137. |
| [11] | 窦从从, 毛羽, 王娟, 等. 高压高过冷度下过冷流动沸腾数值模拟[J]. 化工学报, 2010, 61(3): 580-586. |
| Dou C C, Mao Y, Wang J, et al. Numerical simulation of subcooled boiling flow under high pressure and subcooling condition[J]. CIESC Journal, 2010, 61(3): 580-586. | |
| [12] | Li J D, Liao Y X, Zhou P, et al. Numerical study of flashing pipe flow using a TFM-PBM coupled method: effect of interfacial heat transfer and bubble coalescence and breakup[J]. International Journal of Thermal Sciences, 2023, 193: 108504. |
| [13] | Li X. Multiscale modelling of nucleate boiling on nanocoatings for electronics cooling—From nanoscale to macroscale[J]. Experimental and Computational Multiphase Flow, 2021, 3(4): 233-241. |
| [14] | 祝赫, 张仪, 齐娜娜, 等. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
| Zhu H, Zhang Y, Qi N N, et al. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework[J]. CIESC Journal, 2024, 75(9): 3103-3112. | |
| [15] | Wang M J, Li L F, Liu K, et al. Development of subcooled wall boiling model considering bubble sliding in narrow rectangular channel[J]. International Journal of Thermal Sciences, 2022, 181: 107787. |
| [16] | 匡以武, 孙礼杰, 王文, 等. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193. |
| Kuang Y W, Sun L J, Wang W, et al. Numerical investigation of hydrogen flow boiling based on two-fluid model[J]. CIESC Journal, 2021, 72(S1): 184-193. | |
| [17] | Pal R K, Kumar R. Thermo-hydrodynamic modeling of flow boiling through the horizontal tube using Eulerian two-fluid modeling approach[J]. International Journal of Heat and Mass Transfer, 2021, 168: 120794. |
| [18] | 尚泽敏. 压水堆燃料组件流动沸腾及临界热流密度数值模拟研究[D]. 北京: 北京交通大学, 2021. |
| Shang Z M. Numerical simulation of flow boiling and critical heat flux in a PWR fuel assembly[D]. Beijing: Beijing Jiaotong University, 2021. | |
| [19] | Hou Y, Wang L, Zhang K, et al. Experimental study on boiling two-phase of liquid sodium along a 7-rod bundle (part Ⅱ): Heat transfer characteristics[J]. Annals of Nuclear Energy, 2023, 183: 109677. |
| [20] | Tom S, Rao P M, Venkatraman B, et al. Development of CFD based model for sodium flow boiling in narrow channel akin to SFR fuel subchannel towards high void fraction regimes[J]. Nuclear Engineering and Design, 2022, 396: 111877. |
| [21] | Su D D, Li X B, Zhang H N, et al. Comparative study of boiling behavior between liquid sodium and organic fluid under high heat flux: a molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2025, 236: 126324. |
| [22] | 方闻韬, 佟立丽, 曹学武. 钠冷快堆组件冷却剂沸腾子通道分析方法研究[J]. 核科学与工程, 2023, 43(3): 544-552. |
| Fang W T, Tong L L, Cao X W. Study on the sub-channel analysis method of coolant boiling in the sodium cooled fast reactor assembly[J]. Nuclear Science and Engineering, 2023, 43(3): 544-552. | |
| [23] | Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow[M]. New York: Springer, 2006. |
| [24] | 高一博, 耿琳琳, 王振, 等. 基于欧拉-欧拉方法的气液两相流数值模型发展综述[J]. 力学与实践, 2022, 44(5): 1021-1036. |
| Gao Y B, Geng L L, Wang Z, et al. A review of numerical models development for gas-liquid two-phase flow based on Eulerian-Eulerian method[J]. Mechanics in Engineering, 2022, 44(5): 1021-1036. | |
| [25] | Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25(5): 843-855. |
| [26] | Tomiyama A. Struggle with computational bubble dynamics[J]. Multiphase Science and Technology, 1998, 10(4): 369-405. |
| [27] | Burns A D, Frank T, Hamill I, et al. The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows[C]//5th International Conference on Multiphase Flow. ICMF, 2004, 4(392): 1-17. |
| [28] | Frank T, Zwart P J, Krepper E, et al. Validation of CFD models for mono-and polydisperse air-water two-phase flows in pipes[J]. Nuclear Engineering and Design, 2008, 238(3): 647-659. |
| [29] | Lee W H. A pressure iteration scheme for two-phase flow modeling[J]. Multiphase Transport Fundamentals, Reactor Safety, Applications, 1980, 1: 407-431. |
| [30] | 石晓波, 罗锐, 王洲 等. 钠冷快堆单个燃料组件冷却剂沸腾的数值模拟[J]. 核科学与工程, 2004(4): 312-317. |
| Shi X B, Luo R, Wang Z, et al. Coolant boiling numerical simulation of subassembly for liquid metal cooled fast breeder reactor[J]. Chinese Journal of Nuclear Science Engineering, 2004(4): 312-317. | |
| [31] | Yu H F, Liao W H. Evaporation of solution droplets in spray pyrolysis[J]. International Journal of Heat and Mass Transfer, 1998, 41(8/9): 993-1001. |
| [32] | 田璐. 用于钠冷快堆系统分析软件中堆芯冷却剂通道堵流导致钠沸腾模型的开发[D]. 北京: 华北电力大学, 2013. |
| Tian L. Model development of sodium boiling caused by inlet blockage in the coolant channel used for system analysis code of sodium cooled fast reactor system[D]. Beijing: North China Electric Power University, 2013. | |
| [33] | Kottowski H M, Savatteri C. Fundamentals of liquid metal boiling thermohydraulics[J]. Nuclear Engineering and Design, 1984, 82(2/3): 281-304. |
| [34] | 秋穗正, 张维忠, 廖义香, 等. 液钠沸腾两相流流型与临界热流密度(CHF)机理实验研究[J]. 核科学与工程, 2001, 21(3): 232-237. |
| Qiu S Z, Zhang W Z, Liao Y X, et al. Experimental study on two phase flow pattern and critical heat flux (CHF) mechanism of liquid sodium boiling[J]. Chinese Journal of Nuclear Science and Engineering, 2001, 21(3): 232-237. | |
| [35] | 仇子铖, 兰治科, 马在勇, 等. 液态金属钠沸腾两相流动传热特性理论研究[J]. 核动力工程, 2016, 37(S2): 121-124. |
| Qiu Z C, Lan Z K, Ma Z Y, et al. Theoretical investigation on thermal hydraulic characteristics of boiling two-phase sodium[J]. Nuclear Power Engineering, 2016, 37(S2): 121-124. |
| [1] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [2] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [3] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [4] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [5] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [6] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [7] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [8] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [9] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [10] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [11] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [12] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [13] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [14] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [15] | 段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号