化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5697-5708.DOI: 10.11949/0438-1157.20250481

• 专栏:能源利用过程中的多相流与传热 • 上一篇    

微重力下液态金属钠沸腾传热特性模拟研究

曾育峰1,2,3(), 何玉荣1,2,3, 王天宇1,2()   

  1. 1.哈尔滨工业大学能源科学与工程学院,黑龙江 哈尔滨 150001
    2.黑龙江省新型储能材料与储能过程研究重点实验室,黑龙江 哈尔滨 150001
    3.哈尔滨工业大学郑州研究院,河南 郑州 450000
  • 收稿日期:2025-05-06 修回日期:2025-06-23 出版日期:2025-11-25 发布日期:2025-12-19
  • 通讯作者: 王天宇
  • 作者简介:曾育峰(2001—),男,博士研究生,2318181615@qq.com
  • 基金资助:
    中国广核集团-哈尔滨工业大学先进核能与新能源研究院自主研发项目(CGN-HIT202214)

Simulation research on the boiling heat transfer characteristics of liquid sodium under microgravity

Yufeng ZENG1,2,3(), Yurong HE1,2,3, Tianyu WANG1,2()   

  1. 1.School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
    2.Heilongjiang Key Laboratory of New Energy Storage Materials and Processes, Harbin 150001, Heilongjiang, China
    3.Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, Henan, China
  • Received:2025-05-06 Revised:2025-06-23 Online:2025-11-25 Published:2025-12-19
  • Contact: Tianyu WANG

摘要:

随着空间核动力技术的进步,钠冷快堆成为空间核动力系统理想能源方案,然而微重力下液态金属钠沸腾传热机制不清晰,且缺少防止传热恶化的有效方法。围绕微重力下空间钠冷快堆中液钠流动沸腾问题开展了数值模拟研究,采用双流体模型,对比了常重力与微重力下液钠流动沸腾传热性能,并分析了入口流速以及入口过冷度对微重力下竖直管道中液钠沸腾传热性能的影响。结果表明,与常重力相比,微重力下液钠沸腾传热性能下降,沸腾起始时间提前,更容易发生传热恶化;增加入口流速与过冷度能改善微重力下液钠沸腾传热性能,当入口流速为2.0 m·s-1,入口过冷度为300 K时,未发生传热恶化。研究结果解释了微重力下液钠流动沸腾传热特性,为空间钠冷快堆一回路微重力下的安全设计提供了理论指导。

关键词: 沸腾, 微重力, 传热, 两相流, 数值模拟

Abstract:

With the advancement of space nuclear power technology, sodium-cooled fast reactors have become a promising energy solution for space systems. However, the heat transfer mechanism of liquid metal sodium boiling in microgravity is unclear, and there is a lack of effective methods to prevent heat transfer degradation. This study conducts a numerical investigation on liquid sodium flow boiling in space sodium-cooled fast reactors under microgravity using a two-fluid model. A comparative analysis of heat transfer performance between microgravity and normal gravity conditions is performed, and the effects of inlet velocity and subcooling degree on boiling behavior in vertical channels under microgravity are systematically examined. The results demonstrate that, compared to normal gravity, microgravity degrades the boiling heat transfer performance of liquid sodium, advances the boiling onset time, and increases susceptibility to heat transfer deterioration. Enhancing inlet velocity or subcooling significantly improves heat transfer under microgravity. Notably, no heat transfer deterioration occurs when the inlet velocity reaches 2.0 m·s-1 combined with an inlet subcooling of 300 K. This work elucidates the unique heat transfer characteristics of liquid sodium flow boiling under microgravity and provides critical theoretical insights for the safety design of the primary loop in space sodium-cooled fast reactors under microgravity environments.

Key words: boiling, microgravity, heat transfer, two-phase flow, numerical simulation

中图分类号: