化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5965-5979.DOI: 10.11949/0438-1157.20250705
• 智能过程工程 • 上一篇
收稿日期:2025-06-30
修回日期:2025-07-29
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
刘进一
作者简介:刘进一(1989—),女,博士,讲师,993632@ hainanu.edu.cn
基金资助:
Jinyi LIU(
), Long CHEN, Qiao WANG, Lirong FU, Ying ZHAO
Received:2025-06-30
Revised:2025-07-29
Online:2025-11-25
Published:2025-12-19
Contact:
Jinyi LIU
摘要:
固体氧化物燃料电池(solid oxide fuel cell, SOFC)具有高效、清洁的能源转换特性。SOFC集成系统的优化研究则通过多参数协同调控进一步提升系统效率与长期稳定性,对推动低碳能源技术的发展具有重要意义。本研究基于流道中设置矩形障碍物的SOFC模型,采用Plackett-Burman试验设计筛选关键工作参数,并利用响应面分析法分析参数交互作用,确定多目标优化的必要性。通过单因素试验确定参数范围,筛选出工作温度、压力等关键因素,结合辅助系统参数建立响应面模型。采用非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ, NSGA-Ⅱ)和多目标粒子群优化遗传算法(multi-objective particle swarm optimization genetic algorithm, MOPSO-GA)对系统效率与衰退率进行多目标优化,结果表明:NSGA-Ⅱ优化后系统效率达87.19%(提升22.62%),衰退率为71.75%(增加4.64%);MOPSO-GA优化后效率为83.89%(提升19.32%),衰退率为68.12%(增加1.01%)。NSGA-Ⅱ在效率提升方面更优,而MOPSO-GA更适用于长期稳定运行需求。
中图分类号:
刘进一, 陈龙, 王巧, 付丽荣, 赵映. 基于响应面与遗传算法的固体氧化物燃料电池集成系统多目标优化[J]. 化工学报, 2025, 76(11): 5965-5979.
Jinyi LIU, Long CHEN, Qiao WANG, Lirong FU, Ying ZHAO. Multi-objective optimization of solid oxide fuel cell integrated system based on response surface and genetic algorithm[J]. CIESC Journal, 2025, 76(11): 5965-5979.
图1 SOFC几何结构示意图:(a)障碍物分布三维;(b)二维结构示意图;(c)障碍物分布二维图
Fig.1 Schematic of SOFC geometry: (a)3D schematic of obstacle distribution; (b)2D structure diagram; (c)2D schematic of obstacle distribution
| 参数 | 效应值 | 平方和 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| A | 0.00577 | 0.0001 | 0.0001 | 461.71 | 0.0296 | 显著 |
| B | 0.0439 | 0.0058 | 0.0058 | 28846.47 | 0.0037 | 极显著 |
| C | 0.0447 | 0.0060 | 0.0060 | 29724.87 | 0.0037 | 极显著 |
| D | 0.1968 | 0.1162 | 0.1162 | 578000.00 | 0.0008 | 极显著 |
| E | 0.2391 | 0.1715 | 0.1715 | 852000.00 | 0.0007 | 极显著 |
表1 PB试验显著性分析
Table1 Significance analysis of the PB experiment
| 参数 | 效应值 | 平方和 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| A | 0.00577 | 0.0001 | 0.0001 | 461.71 | 0.0296 | 显著 |
| B | 0.0439 | 0.0058 | 0.0058 | 28846.47 | 0.0037 | 极显著 |
| C | 0.0447 | 0.0060 | 0.0060 | 29724.87 | 0.0037 | 极显著 |
| D | 0.1968 | 0.1162 | 0.1162 | 578000.00 | 0.0008 | 极显著 |
| E | 0.2391 | 0.1715 | 0.1715 | 852000.00 | 0.0007 | 极显著 |
| 方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 | |||
|---|---|---|---|---|---|---|---|---|---|
| R2 0.9673 | 修正R2 0.9232 | 信噪比显著 16.8110 | 变异系数 4.40 | ||||||
| 模型 | 6967.46 | 35 | 199.07 | 21.96 | <0.0001 | 极显著 | |||
| F: pair | 38.32 | 1 | 38.32 | 4.23 | 0.0421 | 显著 | |||
| G: pfuel | 40.04 | 1 | 40.04 | 4.42 | 0.03967 | 显著 | |||
| H: ppump | 60.98 | 1 | 60.98 | 6.72 | 0.01159 | 显著 | |||
| I:ηHE | 69.68 | 1 | 69.68 | 7.68 | 0.0072 | 显著 | |||
| J: TSOFC | 1284.79 | 1 | 1284.79 | 141.76 | <0.0001 | 极显著 | |||
| K: V | 32.17 | 1 | 32.17 | 3.55 | 0.0708 | 不显著 | |||
| L: | 1550.40 | 1 | 1550.40 | 171.07 | <0.0001 | 极显著 | |||
| FG | 42.53 | 1 | 42.53 | 4.69 | 0.03391 | 显著 | |||
| FH | 4.35 | 1 | 4.35 | 0.48 | 0.6569 | 不显著 | |||
| FI | 26.82 | 1 | 26.82 | 2.96 | 0.8989 | 不显著 | |||
| FJ | 6.25 | 1 | 6.25 | 0.69 | 0.5330 | 不显著 | |||
| FK | 1.54 | 1 | 1.54 | 0.17 | 0.1226 | 不显著 | |||
| FL | 2.08 | 1 | 2.08 | 0.23 | 0.1690 | 不显著 | |||
| GH | 3.90 | 1 | 3.90 | 0.43 | 0.3257 | 不显著 | |||
| GI | 1.36 | 1 | 1.36 | 0.15 | 0.0997 | 不显著 | |||
| GJ | 16.67 | 1 | 16.67 | 1.84 | 0.8001 | 不显著 | |||
| GK | 1.18 | 1 | 1.18 | 0.13 | 0.0764 | 不显著 | |||
| GL | 1.09 | 1 | 1.09 | 0.12 | 0.0669 | 不显著 | |||
| HI | 50.10 | 1 | 50.10 | 5.53 | 0.0210 | 显著 | |||
| HJ | 13.05 | 1 | 13.05 | 1.44 | 0.2139 | 不显著 | |||
| HK | 5.44 | 1 | 5.44 | 0.60 | 0.5770 | 不显著 | |||
| HL | 15.86 | 1 | 15.86 | 1.75 | 0.1863 | 不显著 | |||
| IJ | 7.43 | 1 | 7.43 | 0.82 | 0.4454 | 不显著 | |||
| IK | 6.98 | 1 | 6.98 | 0.77 | 0.4721 | 不显著 | |||
| IL | 4.80 | 1 | 4.80 | 0.53 | 0.6301 | 不显著 | |||
| JK | 1.21 | 1 | 1.21 | 0.1332 | 0.7181 | 不显著 | |||
| JL | 41.55 | 1 | 41.55 | 4.58 | 0.0418 | 显著 | |||
| KL | 157.97 | 1 | 157.97 | 17.43 | 0.0003 | 显著 | |||
| F2 | 12.01 | 1 | 12.01 | 1.33 | 0.2601 | 不显著 | |||
| G2 | 0.9242 | 1 | 0.9242 | 0.1020 | 0.7520 | 不显著 | |||
| H2 | 20.91 | 1 | 20.91 | 2.31 | 0.1409 | 不显著 | |||
| I2 | 19.60 | 1 | 19.60 | 2.16 | 0.1534 | 不显著 | |||
| J2 | 2602.41 | 1 | 2602.41 | 287.14 | <0.0001 | 极显著 | |||
| K2 | 2.15 | 1 | 2.15 | 0.2377 | 0.6299 | 不显著 | |||
| L2 | 1339.39 | 1 | 1339.39 | 147.78 | <0.0001 | 极显著 | |||
| 残差 | 235.64 | 26 | 9.06 | ||||||
表2 系统衰退率模型BBD方差分析
Table 2 Variance analysis for the BBD of the system recession rate model
| 方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 | |||
|---|---|---|---|---|---|---|---|---|---|
| R2 0.9673 | 修正R2 0.9232 | 信噪比显著 16.8110 | 变异系数 4.40 | ||||||
| 模型 | 6967.46 | 35 | 199.07 | 21.96 | <0.0001 | 极显著 | |||
| F: pair | 38.32 | 1 | 38.32 | 4.23 | 0.0421 | 显著 | |||
| G: pfuel | 40.04 | 1 | 40.04 | 4.42 | 0.03967 | 显著 | |||
| H: ppump | 60.98 | 1 | 60.98 | 6.72 | 0.01159 | 显著 | |||
| I:ηHE | 69.68 | 1 | 69.68 | 7.68 | 0.0072 | 显著 | |||
| J: TSOFC | 1284.79 | 1 | 1284.79 | 141.76 | <0.0001 | 极显著 | |||
| K: V | 32.17 | 1 | 32.17 | 3.55 | 0.0708 | 不显著 | |||
| L: | 1550.40 | 1 | 1550.40 | 171.07 | <0.0001 | 极显著 | |||
| FG | 42.53 | 1 | 42.53 | 4.69 | 0.03391 | 显著 | |||
| FH | 4.35 | 1 | 4.35 | 0.48 | 0.6569 | 不显著 | |||
| FI | 26.82 | 1 | 26.82 | 2.96 | 0.8989 | 不显著 | |||
| FJ | 6.25 | 1 | 6.25 | 0.69 | 0.5330 | 不显著 | |||
| FK | 1.54 | 1 | 1.54 | 0.17 | 0.1226 | 不显著 | |||
| FL | 2.08 | 1 | 2.08 | 0.23 | 0.1690 | 不显著 | |||
| GH | 3.90 | 1 | 3.90 | 0.43 | 0.3257 | 不显著 | |||
| GI | 1.36 | 1 | 1.36 | 0.15 | 0.0997 | 不显著 | |||
| GJ | 16.67 | 1 | 16.67 | 1.84 | 0.8001 | 不显著 | |||
| GK | 1.18 | 1 | 1.18 | 0.13 | 0.0764 | 不显著 | |||
| GL | 1.09 | 1 | 1.09 | 0.12 | 0.0669 | 不显著 | |||
| HI | 50.10 | 1 | 50.10 | 5.53 | 0.0210 | 显著 | |||
| HJ | 13.05 | 1 | 13.05 | 1.44 | 0.2139 | 不显著 | |||
| HK | 5.44 | 1 | 5.44 | 0.60 | 0.5770 | 不显著 | |||
| HL | 15.86 | 1 | 15.86 | 1.75 | 0.1863 | 不显著 | |||
| IJ | 7.43 | 1 | 7.43 | 0.82 | 0.4454 | 不显著 | |||
| IK | 6.98 | 1 | 6.98 | 0.77 | 0.4721 | 不显著 | |||
| IL | 4.80 | 1 | 4.80 | 0.53 | 0.6301 | 不显著 | |||
| JK | 1.21 | 1 | 1.21 | 0.1332 | 0.7181 | 不显著 | |||
| JL | 41.55 | 1 | 41.55 | 4.58 | 0.0418 | 显著 | |||
| KL | 157.97 | 1 | 157.97 | 17.43 | 0.0003 | 显著 | |||
| F2 | 12.01 | 1 | 12.01 | 1.33 | 0.2601 | 不显著 | |||
| G2 | 0.9242 | 1 | 0.9242 | 0.1020 | 0.7520 | 不显著 | |||
| H2 | 20.91 | 1 | 20.91 | 2.31 | 0.1409 | 不显著 | |||
| I2 | 19.60 | 1 | 19.60 | 2.16 | 0.1534 | 不显著 | |||
| J2 | 2602.41 | 1 | 2602.41 | 287.14 | <0.0001 | 极显著 | |||
| K2 | 2.15 | 1 | 2.15 | 0.2377 | 0.6299 | 不显著 | |||
| L2 | 1339.39 | 1 | 1339.39 | 147.78 | <0.0001 | 极显著 | |||
| 残差 | 235.64 | 26 | 9.06 | ||||||
| 方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| R2 0.9988 | 修正R2 0.9972 | 信噪比 109.8268 | 变异系数 0.5896 | |||
| 模型 | 3213.0200 | 35 | 91.8000 | 613.83 | <0.0001 | 极显著 |
| F: pair | 0.6930 | 1 | 0.6930 | 6.03 | 0.0201 | 显著 |
| G: pfuel | 0.5400 | 1 | 0.5400 | 4.69 | 0.0339 | 显著 |
| H: ppump | 0.5750 | 1 | 0.5750 | 5.00 | 0.0311 | 显著 |
| I: ηHE | 0.7240 | 1 | 0.7240 | 6.30 | 0.0159 | 显著 |
| J: TSOFC | 1433.1700 | 1 | 1433.1700 | 9582.95 | <0.0001 | 极显著 |
| K: V | 3.8200 | 1 | 3.8200 | 25.53 | <0.0001 | 极显著 |
| L: | 1715.4700 | 1 | 1715.4700 | 11470.53 | <0.0001 | 极显著 |
| FG | 0.4860 | 1 | 0.4860 | 4.23 | 0.0477 | 显著 |
| FH | 0.0437 | 1 | 0.0437 | 0.38 | 0.7101 | 不显著 |
| FI | 0.0310 | 1 | 0.0310 | 0.27 | 0.7990 | 不显著 |
| FJ | 0.1391 | 1 | 0.1391 | 1.21 | 0.2661 | 不显著 |
| FK | 0.0999 | 1 | 0.0999 | 0.87 | 0.3774 | 不显著 |
| FL | 0.0632 | 1 | 0.0632 | 0.55 | 0.5866 | 不显著 |
| GH | 0.2391 | 1 | 0.2391 | 2.08 | 0.1559 | 不显著 |
| GI | 0.0563 | 1 | 0.0563 | 0.49 | 0.6334 | 不显著 |
| GJ | 0.3196 | 1 | 0.3196 | 2.78 | 0.1197 | 不显著 |
| GK | 0.0816 | 1 | 0.0816 | 0.71 | 0.4770 | 不显著 |
| GL | 0.1127 | 1 | 0.1127 | 0.98 | 0.3391 | 不显著 |
| HI | 0.8050 | 1 | 0.8050 | 7.00 | 0.0128 | 显著 |
| HJ | 0.1586 | 1 | 0.1586 | 1.38 | 0.2408 | 不显著 |
| HK | 0.6103 | 1 | 0.6103 | 4.08 | 0.5038 | 不显著 |
| HL | 0.3572 | 1 | 0.3572 | 2.39 | 0.1343 | 不显著 |
| IJ | 0.1333 | 1 | 0.1333 | 1.16 | 0.3018 | 不显著 |
| IK | 0.1357 | 1 | 0.1357 | 1.18 | 0.2933 | 不显著 |
| IL | 0.2747 | 1 | 0.2747 | 2.39 | 0.1107 | 不显著 |
| JK | 0.1688 | 1 | 0.1688 | 1.13 | 0.2978 | 不显著 |
| JL | 0.5200 | 1 | 0.5200 | 4.53 | 0.0329 | 显著 |
| KL | 0.4400 | 1 | 0.4400 | 3.83 | 0.0418 | 显著 |
| F2 | 0.0629 | 1 | 0.0629 | 0.42 | 0.5224 | 不显著 |
| G2 | 0.0011 | 1 | 0.0011 | <0.01 | 0.9336 | 不显著 |
| H2 | 0.1168 | 1 | 0.1168 | 0.78 | 0.3849 | 不显著 |
| I2 | 0.0476 | 1 | 0.0476 | 0.32 | 0.5774 | 不显著 |
| J2 | 30.7700 | 1 | 30.7700 | 205.78 | <0.0001 | 极显著 |
| K2 | 16.6400 | 1 | 16.6400 | 111.29 | <0.0001 | 极显著 |
| L2 | 6.2200 | 1 | 6.2200 | 41.58 | <0.0001 | 极显著 |
| 残差 | 3.8900 | 26 | 0.1149 | |||
表3 系统效率模型的BBD方差分析
Table 3 Variance analysis for the BBD of the system efficiency model
| 方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| R2 0.9988 | 修正R2 0.9972 | 信噪比 109.8268 | 变异系数 0.5896 | |||
| 模型 | 3213.0200 | 35 | 91.8000 | 613.83 | <0.0001 | 极显著 |
| F: pair | 0.6930 | 1 | 0.6930 | 6.03 | 0.0201 | 显著 |
| G: pfuel | 0.5400 | 1 | 0.5400 | 4.69 | 0.0339 | 显著 |
| H: ppump | 0.5750 | 1 | 0.5750 | 5.00 | 0.0311 | 显著 |
| I: ηHE | 0.7240 | 1 | 0.7240 | 6.30 | 0.0159 | 显著 |
| J: TSOFC | 1433.1700 | 1 | 1433.1700 | 9582.95 | <0.0001 | 极显著 |
| K: V | 3.8200 | 1 | 3.8200 | 25.53 | <0.0001 | 极显著 |
| L: | 1715.4700 | 1 | 1715.4700 | 11470.53 | <0.0001 | 极显著 |
| FG | 0.4860 | 1 | 0.4860 | 4.23 | 0.0477 | 显著 |
| FH | 0.0437 | 1 | 0.0437 | 0.38 | 0.7101 | 不显著 |
| FI | 0.0310 | 1 | 0.0310 | 0.27 | 0.7990 | 不显著 |
| FJ | 0.1391 | 1 | 0.1391 | 1.21 | 0.2661 | 不显著 |
| FK | 0.0999 | 1 | 0.0999 | 0.87 | 0.3774 | 不显著 |
| FL | 0.0632 | 1 | 0.0632 | 0.55 | 0.5866 | 不显著 |
| GH | 0.2391 | 1 | 0.2391 | 2.08 | 0.1559 | 不显著 |
| GI | 0.0563 | 1 | 0.0563 | 0.49 | 0.6334 | 不显著 |
| GJ | 0.3196 | 1 | 0.3196 | 2.78 | 0.1197 | 不显著 |
| GK | 0.0816 | 1 | 0.0816 | 0.71 | 0.4770 | 不显著 |
| GL | 0.1127 | 1 | 0.1127 | 0.98 | 0.3391 | 不显著 |
| HI | 0.8050 | 1 | 0.8050 | 7.00 | 0.0128 | 显著 |
| HJ | 0.1586 | 1 | 0.1586 | 1.38 | 0.2408 | 不显著 |
| HK | 0.6103 | 1 | 0.6103 | 4.08 | 0.5038 | 不显著 |
| HL | 0.3572 | 1 | 0.3572 | 2.39 | 0.1343 | 不显著 |
| IJ | 0.1333 | 1 | 0.1333 | 1.16 | 0.3018 | 不显著 |
| IK | 0.1357 | 1 | 0.1357 | 1.18 | 0.2933 | 不显著 |
| IL | 0.2747 | 1 | 0.2747 | 2.39 | 0.1107 | 不显著 |
| JK | 0.1688 | 1 | 0.1688 | 1.13 | 0.2978 | 不显著 |
| JL | 0.5200 | 1 | 0.5200 | 4.53 | 0.0329 | 显著 |
| KL | 0.4400 | 1 | 0.4400 | 3.83 | 0.0418 | 显著 |
| F2 | 0.0629 | 1 | 0.0629 | 0.42 | 0.5224 | 不显著 |
| G2 | 0.0011 | 1 | 0.0011 | <0.01 | 0.9336 | 不显著 |
| H2 | 0.1168 | 1 | 0.1168 | 0.78 | 0.3849 | 不显著 |
| I2 | 0.0476 | 1 | 0.0476 | 0.32 | 0.5774 | 不显著 |
| J2 | 30.7700 | 1 | 30.7700 | 205.78 | <0.0001 | 极显著 |
| K2 | 16.6400 | 1 | 16.6400 | 111.29 | <0.0001 | 极显著 |
| L2 | 6.2200 | 1 | 6.2200 | 41.58 | <0.0001 | 极显著 |
| 残差 | 3.8900 | 26 | 0.1149 | |||
| 决策变量 | 符号 | 上限 | 下限 | 单位 |
|---|---|---|---|---|
| 空气压缩机工作压力 | pair | 10 | 1 | atm |
| 燃料压缩机工作压力 | pfuel | 10 | 1 | atm |
| 水泵工作压力 | ppump | 5 | 0.5 | atm |
| 热交换效率 | ηHE | 0.9 | 0.5 | — |
| 工作温度 | TSOFC | 900 | 600 | ℃ |
| 工作电压 | V | 0.95 | 0.1 | V |
| 氧气浓度 | 0.448 | 0.21 | — |
表4 决策参数的约束条件
Table 4 Constraints on decision parameters
| 决策变量 | 符号 | 上限 | 下限 | 单位 |
|---|---|---|---|---|
| 空气压缩机工作压力 | pair | 10 | 1 | atm |
| 燃料压缩机工作压力 | pfuel | 10 | 1 | atm |
| 水泵工作压力 | ppump | 5 | 0.5 | atm |
| 热交换效率 | ηHE | 0.9 | 0.5 | — |
| 工作温度 | TSOFC | 900 | 600 | ℃ |
| 工作电压 | V | 0.95 | 0.1 | V |
| 氧气浓度 | 0.448 | 0.21 | — |
| [1] | 邹才能, 马锋, 潘松圻, 等. 世界能源转型革命与绿色智慧能源体系内涵及路径[J]. 石油勘探与开发, 2023, 50(3): 633-647. |
| Zou C N, Ma F, Pan S Q, et al. Global energy transition revolution and the connotation and pathway of the green and intelligent energy system[J]. Petroleum Exploration and Development, 2023, 50(3): 633-647. | |
| [2] | 邹才能, 何东博, 贾成业, 等. 世界能源转型内涵、路径及其对碳中和的意义[J]. 石油学报, 2021, 42(2): 233-247. |
| Zou C N, He D B, Jia C Y, et al. Connotation and pathway of world energy transition and its significance for carbon neutral[J]. Acta Petrolei Sinica, 2021, 42(2): 233-247. | |
| [3] | Zhang X, Xu W T, Rauf A, et al. Transitioning from conventional energy to clean renewable energy in G7 countries: a signed network approach[J]. Energy, 2024, 307: 132655. |
| [4] | 毕锐, 王孝淦, 袁华凯, 等. 考虑供需双侧响应和碳交易的氢能综合能源系统鲁棒调度[J]. 电力系统保护与控制, 2023, 51(12): 122-132. |
| Bi R, Wang X G, Yuan H K, et al. Robust dispatch of a hydrogen integrated energy system considering double side response and carbon trading mechanism[J]. Power System Protection and Control, 2023, 51(12): 122-132. | |
| [5] | Zhu Z G, Ning H L, Song C, et al. Effect of low plasma spraying power on anode microstructure and performance for metal-supported solid oxide fuel cells[J]. Journal of Thermal Spray Technology, 2024, 33(5): 1725-1735. |
| [6] | 洪吉超, 马世琨, 梁峰伟, 等. 氢燃料电池数字孪生技术的系统集成与智能管理[J]. 工程科学学报, 2025, 47(11): 2296-2308. |
| Hong J C, Ma S K, Liang F W, et al. System integration and intelligent management of hydrogen fuel cells based on digital twin technology[J]. Chinese Journal of Engineering, 2025, 47(11): 2296-2308. | |
| [7] | Beyrami J, Chitsaz A, Parham K, et al. Optimum performance of a single effect desalination unit integrated with a SOFC system by multi-objective thermo-economic optimization based on genetic algorithm[J]. Energy, 2019, 186: 115811. |
| [8] | Wang J Y, Hua J, Pan Z H, et al. Novel SOFC system concept with anode off-gas dual recirculation: a pathway to zero carbon emission and high energy efficiency[J]. Applied Energy, 2024, 361: 122862. |
| [9] | Khani L, Mehr A S, Yari M, et al. Multi-objective optimization of an indirectly integrated solid oxide fuel cell-gas turbine cogeneration system[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21470-21488. |
| [10] | Hosseinpour J, Sadeghi M, Chitsaz A, et al. Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a Stirling engine[J]. Energy Conversion and Management, 2017, 143: 448-458. |
| [11] | Huang Y, Turan A. Fuel sensitivity and parametric optimization of SOFC-GT hybrid system operational characteristics[J]. Thermal Science and Engineering Progress, 2019, 14: 100407. |
| [12] | Roy D, Samanta S, Ghosh S. Performance optimization through response surface methodology of an integrated biomass gasification based combined heat and power plant employing solid oxide fuel cell and externally fired gas turbine[J]. Energy Conversion and Management, 2020, 222: 113182. |
| [13] | Khoshgoftar Manesh M H, Ghorbani S, Blanco-Marigorta A M. Optimal design and analysis of a combined freshwater-power generation system based on integrated solid oxide fuel cell-gas turbine-organic Rankine cycle-multi effect distillation system[J]. Applied Thermal Engineering, 2022, 211: 118438. |
| [14] | Thanganadar D, Asfand F, Patchigolla K, et al. Techno-economic analysis of supercritical carbon dioxide cycle integrated with coal-fired power plant[J]. Energy Conversion and Management, 2021, 242: 114294. |
| [15] | Xu G P, Yu Z T, Xia L, et al. Performance improvement of solid oxide fuel cells by combining three-dimensional CFD modeling, artificial neural network and genetic algorithm[J]. Energy Conversion and Management, 2022, 268: 116026. |
| [16] | Tang Z G, Xiang Y, Li M, et al. Multi-objective optimization of liquid-cooled battery thermal management system with biomimetic fractal channels using artificial neural networks and response surface methodology[J]. International Journal of Thermal Sciences, 2024, 206: 109304. |
| [17] | Su H R, Hu Y H. Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels[J]. Chemical Engineering Journal, 2020, 402: 126235. |
| [18] | Hagen A, Wulff A C, Zielke P, et al. SOFC stacks for mobile applications with excellent robustness towards thermal stresses[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29201-29211. |
| [19] | Salvador C A F, Rego J S, Lopes T, et al. Materials selection of non-metallic glasses for planar solid-oxide fuel cell sealants[J]. Ceramics International, 2025, 51(6): 6867-6878. |
| [20] | Hesami H, Borji M, Rezapour J. Three-dimensional numerical investigation on the effect of interconnect design on the performance of internal reforming planar solid oxide fuel cell[J]. Korean Journal of Chemical Engineering, 2021, 38(12): 2423-2435. |
| [21] | Sayadian S, Ghassemi M, Ahmadi S, et al. Numerical analysis of transport phenomena in solid oxide fuel cell gas channels[J]. Fuel, 2022, 311: 122557. |
| [22] | Sayadian S, Ghassemi M, Robinson A J. Multi-physics simulation of transport phenomena in planar proton-conducting solid oxide fuel cell[J]. Journal of Power Sources, 2021, 481: 228997. |
| [23] | Milewski J, Swirski K, Santarelli M, et al. Advanced Methods of Solid Oxide Fuel Cell Modeling [M]. Berlin: Springer Science & Business Media, 2011. |
| [24] | Patcharavorachot Y, Arpornwichanop A, Chuachuensuk A. Electrochemical study of a planar solid oxide fuel cell: role of support structures[J]. Journal of Power Sources, 2008, 177(2): 254-261. |
| [25] | Wu Z, Zhu P F, Yao J, et al. Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation[J]. Energy, 2020, 192: 116613. |
| [26] | Yahya A, Ferrero D, Dhahri H, et al. Electrochemical performance of solid oxide fuel cell: experimental study and calibrated model[J]. Energy, 2018, 142: 932-943. |
| [27] | Chang J S, Jiao M H, Zhang P P, et al. Analyzing the degradation mechanism of solid oxide fuel cell during different time periods[J]. Electrochimica Acta, 2024, 498: 144615. |
| [28] | Zhu P F, Wu Z, Wang H, et al. Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network[J]. Applied Energy, 2022, 322: 119508. |
| [29] | He J, Wang X X, Jin F J, et al. System simulation and parametric analysis of low-concentration coal mine gas fed SOFC-CHP with deoxygenation and enrichment pretreatment[J]. Fuel, 2024, 373: 132300. |
| [30] | Petrone R, Hissel D, Péra M C, et al. Accelerated stress test procedures for PEM fuel cells under actual load constraints: state-of-art and proposals[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12489-12505. |
| [31] | Shao Y Q, Shen J J, Ren H, et al. The influence of microstructural evolution on performance degradation in solid oxide fuel cells[J]. Materials Science and Engineering: B, 2025, 317: 118187. |
| [1] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [2] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [3] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [4] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [5] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [6] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [7] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [8] | 石一帆, 柯钢, 陈浩, 黄孝胜, 叶芳, 李成娇, 郭航. 大型高低温环境实验室温度控制仿真[J]. 化工学报, 2025, 76(S1): 268-280. |
| [9] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [10] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [11] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [12] | 沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122. |
| [13] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [14] | 蒋智洪, 雷骞, 朱引军, 雷志刚, 陈洪林. 三聚甲醛体系物性模型和提浓工艺研究[J]. 化工学报, 2025, 76(9): 4872-4881. |
| [15] | 贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号