化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4383-4397.DOI: 10.11949/0438-1157.20250381

• 专栏:过程模拟与仿真 • 上一篇    下一篇

气体密度对高压流态化影响的CFD-DEM模拟

贾志勇(), 沈宪琨, 蓝晓程, 王铁峰()   

  1. 清华大学化学工程系,北京 100084
  • 收稿日期:2025-04-14 修回日期:2025-05-21 出版日期:2025-09-25 发布日期:2025-10-23
  • 通讯作者: 王铁峰
  • 作者简介:贾志勇(2000—),男,博士研究生,jiazy18@tsinghua.org.cn

CFD-DEM simulation of effects of gas density on pressurized fluidization

Zhiyong JIA(), Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG()   

  1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2025-04-14 Revised:2025-05-21 Online:2025-09-25 Published:2025-10-23
  • Contact: Tiefeng WANG

摘要:

高压流化床工业应用广泛。利用计算流体力学-离散元耦合模型(CFD-DEM)在1.15~92.0 kg/m3范围内考察了气体密度对A、B类颗粒最小流化速度、最小鼓泡速度、气泡和压降等流体力学行为的影响规律。模拟结果表明,不同压力下A类颗粒均存在散式流化区,流化因子随压力提高而略有增加,B类颗粒的流化因子始终小于1.1。此外,随气体密度增加,B类颗粒中气泡尺寸显著减小、数量显著增加。当气体密度由1.15增加到92.0 kg/m3时,粒径为300 μm的B类颗粒中的气泡尺寸减小了约60%,气泡数量增加了2.5倍。典型A类颗粒中的气泡尺寸与数量几乎不受气体密度影响。床层压降标准差和压力脉动振幅均随气体密度增加而降低,B类颗粒降低更显著。最后,通过对颗粒碰撞力和曳力系数的分析,探讨了气固、固固相互作用的竞争对高压流态化稳定性的影响机制。

关键词: 高压流态化, 气体密度, 气泡, 离散元, 两相流, 数值模拟, 计算流体力学

Abstract:

Pressurized gas-solid fluidization has been widely applied recently. Computational fluid dynamics coupled with discrete element model (CFD-DEM) was used to investigate the effect of gas density on pressurized fluidization in terms of the minimum fluidization velocity, minimum bubbling velocity, bubble behaviors and pressure signals. Simulation results show that Group A particles exhibit a uniform fluidization regime across all pressure conditions, with the fluidization index increasing as pressure rises. In contrast, Geldart B particles consistently maintain a fluidization index below 1.1. Further, within Group B particles, an increase in gas density leads to a significant decrease in bubble size and a substantial increase in bubble count. Specifically, an 80-fold increase in gas density results in a 60% reduction in bubble size and a 2.5-fold increase in bubble count in a bed with 300 μm particles. However, in Geldart A particle beds, gas density shows almost no effect on bubble sizes or bubble count. Moreover, as gas density increases, both the standard deviations in the time domain and the amplitudes in the frequency domain of pressure drops decrease, with a more pronounced effect in Group B particle beds. Finally, the competition between gas-solid and solid-solid interactions is analyzed through particle collision forces and drag coefficients, which provides a reasonable framework for understanding the characteristics of pressurized gas-solid fluidization.

Key words: pressurized fluidization, gas density, bubble, discrete element method, two-phase flow, numerical simulation, computational fluid dynamics

中图分类号: