化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4383-4397.DOI: 10.11949/0438-1157.20250381
收稿日期:2025-04-14
修回日期:2025-05-21
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
王铁峰
作者简介:贾志勇(2000—),男,博士研究生,jiazy18@tsinghua.org.cn
Zhiyong JIA(
), Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG(
)
Received:2025-04-14
Revised:2025-05-21
Online:2025-09-25
Published:2025-10-23
Contact:
Tiefeng WANG
摘要:
高压流化床工业应用广泛。利用计算流体力学-离散元耦合模型(CFD-DEM)在1.15~92.0 kg/m3范围内考察了气体密度对A、B类颗粒最小流化速度、最小鼓泡速度、气泡和压降等流体力学行为的影响规律。模拟结果表明,不同压力下A类颗粒均存在散式流化区,流化因子随压力提高而略有增加,B类颗粒的流化因子始终小于1.1。此外,随气体密度增加,B类颗粒中气泡尺寸显著减小、数量显著增加。当气体密度由1.15增加到92.0 kg/m3时,粒径为300 μm的B类颗粒中的气泡尺寸减小了约60%,气泡数量增加了2.5倍。典型A类颗粒中的气泡尺寸与数量几乎不受气体密度影响。床层压降标准差和压力脉动振幅均随气体密度增加而降低,B类颗粒降低更显著。最后,通过对颗粒碰撞力和曳力系数的分析,探讨了气固、固固相互作用的竞争对高压流态化稳定性的影响机制。
中图分类号:
贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397.
Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization[J]. CIESC Journal, 2025, 76(9): 4383-4397.
| 方程类别 | 控制方程 |
|---|---|
| 气相质量守恒方程 | |
| 气相动量守恒方程 | |
| 颗粒相运动方程 | |
| 相间动量传递方程 | |
| Gidaspow曳力模型 |
表1 模型方程
Table 1 Model equations
| 方程类别 | 控制方程 |
|---|---|
| 气相质量守恒方程 | |
| 气相动量守恒方程 | |
| 颗粒相运动方程 | |
| 相间动量传递方程 | |
| Gidaspow曳力模型 |
| 参数 | 模拟设置 | 模型验证设置 |
|---|---|---|
| 网格尺寸 | 3dp | 3dp |
| 网格数量(x×y×z) | 18×80×2 | 21×240×2 |
| 气体密度/(kg/m3) | 1.15~92.00 | 1.15 |
| 气体黏度/(Pa·s) | 1.78×10-5 | 1.70×10-5 |
| 颗粒粒径/μm | 60~300 | 250 |
| 颗粒密度/(kg/m3) | 2330 | 2550 |
| 摩擦因数 | 0.1 | 0.1 |
| 法向弹性系数/(N/m) | 7.0 | 7.0 |
| 切向弹性系数/(N/m) | 2.0 | 2.0 |
| 恢复系数 | 0.9 | 0.9 |
| 壁面条件 | 自由滑移 | 自由滑移 |
| 入口边界条件 | 速度入口 | 速度入口 |
| 出口边界条件 | 压力出口 | 压力出口 |
表 2 参数设置
Table 2 Simulation settings
| 参数 | 模拟设置 | 模型验证设置 |
|---|---|---|
| 网格尺寸 | 3dp | 3dp |
| 网格数量(x×y×z) | 18×80×2 | 21×240×2 |
| 气体密度/(kg/m3) | 1.15~92.00 | 1.15 |
| 气体黏度/(Pa·s) | 1.78×10-5 | 1.70×10-5 |
| 颗粒粒径/μm | 60~300 | 250 |
| 颗粒密度/(kg/m3) | 2330 | 2550 |
| 摩擦因数 | 0.1 | 0.1 |
| 法向弹性系数/(N/m) | 7.0 | 7.0 |
| 切向弹性系数/(N/m) | 2.0 | 2.0 |
| 恢复系数 | 0.9 | 0.9 |
| 壁面条件 | 自由滑移 | 自由滑移 |
| 入口边界条件 | 速度入口 | 速度入口 |
| 出口边界条件 | 压力出口 | 压力出口 |
| 流化气体 | 颗粒种类 | 颗粒密度/(kg/m3) | 颗粒类别 | 实验压力/MPa | 关联式参数 | 文献 | |
|---|---|---|---|---|---|---|---|
| K2/(2K1) | 1/K1 | ||||||
| N2 | (1) 煤 | 1247 | A/B | 0.1~6.4 | 28.7 | 0.0494 | [ |
| (2) 焦炭 | 1116 | A/B | |||||
| (3) 玻璃球 | 2472 | A/B | |||||
| N2 | 玻璃珠 | — | B、D | 0.1~4.9 | 33.95 | 0.0465 | [ |
| 空气 | (1) 石英砂 | 2497 | D | 0.5~2.0 | 22.1 | 0.0354 | [ |
| (2) 玻璃珠 | 2571 | ||||||
| N2 | 聚苯乙烯 | 1020 | B、D | 0.1~2.7 | 27.9 | 0.0554 | [ |
| CO2、N2 | (1)石英砂 | 2560 | B | 0.1~1.0 | 31.56 | 0.043 | [ |
| (2)铁粉 | 7800 | ||||||
| N2 | 聚苯乙烯 | 1200 | B/D | 0.1~2.5 | 34.15 | 0.05916 | [ |
| 空气 | (1) 塑料颗粒 | 1010 | D | 0.1~0.4 | 15.69 | 0.0241 | [ |
| (2) 玉米芯 | 924 | ||||||
| (3) 玻璃珠 | 2157 | ||||||
表3 高压流态化实验条件及最小流化速度关联式参数
Table 3 Experimental conditions of pressurized fluidization and correlation parameters for Umf
| 流化气体 | 颗粒种类 | 颗粒密度/(kg/m3) | 颗粒类别 | 实验压力/MPa | 关联式参数 | 文献 | |
|---|---|---|---|---|---|---|---|
| K2/(2K1) | 1/K1 | ||||||
| N2 | (1) 煤 | 1247 | A/B | 0.1~6.4 | 28.7 | 0.0494 | [ |
| (2) 焦炭 | 1116 | A/B | |||||
| (3) 玻璃球 | 2472 | A/B | |||||
| N2 | 玻璃珠 | — | B、D | 0.1~4.9 | 33.95 | 0.0465 | [ |
| 空气 | (1) 石英砂 | 2497 | D | 0.5~2.0 | 22.1 | 0.0354 | [ |
| (2) 玻璃珠 | 2571 | ||||||
| N2 | 聚苯乙烯 | 1020 | B、D | 0.1~2.7 | 27.9 | 0.0554 | [ |
| CO2、N2 | (1)石英砂 | 2560 | B | 0.1~1.0 | 31.56 | 0.043 | [ |
| (2)铁粉 | 7800 | ||||||
| N2 | 聚苯乙烯 | 1200 | B/D | 0.1~2.5 | 34.15 | 0.05916 | [ |
| 空气 | (1) 塑料颗粒 | 1010 | D | 0.1~0.4 | 15.69 | 0.0241 | [ |
| (2) 玉米芯 | 924 | ||||||
| (3) 玻璃珠 | 2157 | ||||||
| [1] | Emiola-Sadiq T, Wang J C, Zhang L F, et al. Mixing and segregation of binary mixtures of biomass and silica sand in a fluidized bed[J]. Particuology, 2021, 58: 58-73. |
| [2] | Liu N, Liu X P, Wang F M, et al. CFD simulation study of the effect of baffles on the fluidized bed for hydrogenation of silicon tetrachloride[J]. Chinese Journal of Chemical Engineering, 2022, 45: 219-228. |
| [3] | Lian G Q, Zhong W Q, Liu X J. Effects of gas composition and operating pressure on the heat transfer in an oxy-fuel fluidized bed: a CFD-DEM study[J]. Chemical Engineering Science, 2022, 249: 117368. |
| [4] | Bond N K, Symonds R T, Hughes R W. Pressurized chemical looping for direct reduced iron production: economics of carbon neutral process configurations[J]. Energies, 2024, 17(3): 545. |
| [5] | Zang H Y, Hu S W, Liu X H, et al. Applying a CFD-PBM approach to modeling the flow behavior in pressurized bubbling fluidized beds[J]. Powder Technology, 2025, 452: 120541. |
| [6] | Yan D, Li H Z, Zhu Q S, et al. Theoretical analysis and numerical simulation of the gas-solid hydrodynamics in pressurized bubbling fluidized beds[J]. Powder Technology, 2025, 455: 120789. |
| [7] | Chitester D C, Kornosky R M, Fan L S, et al. Characteristics of fluidization at high pressure[J]. Chemical Engineering Science, 1984, 39(2): 253-261. |
| [8] | Li L, Duan Y Q, Duan L B, et al. Flow characteristics in pressurized oxy-fuel fluidized bed under hot condition[J]. International Journal of Multiphase Flow, 2018, 108: 1-10. |
| [9] | Sidorenko I, Rhodes M J. Influence of pressure on fluidization properties[J]. Powder Technology, 2004, 141(1): 137-154. |
| [10] | King D F, Harrison D. The dense phase of a fluidized-bed at elevated pressures[J]. Transactions of the Institution of Chemical Engineers, 1982, 60(1): 26-30. |
| [11] | Jacob K V, Weimer A W. High-pressure particulate expansion and minimum bubbling of fine carbon powders[J]. AIChE Journal, 1987, 33(10): 1698-1706. |
| [12] | Chan I H, Sishtla C, Knowlton T M. The effect of pressure on bubble parameters in gas-fluidized beds[J]. Powder Technology, 1987, 53(3): 217-235. |
| [13] | Brouwer G C, Wagner E C, van Ommen J R, et al. Effects of pressure and fines content on bubble diameter in a fluidized bed studied using fast X-ray tomography[J]. Chemical Engineering Journal, 2012, 207: 711-717. |
| [14] | Song J L, Liu D Y, Ma J L, et al. Effect of elevated pressure on bubble properties in a two-dimensional gas-solid fluidized bed[J]. Chemical Engineering Research and Design, 2018, 138: 21-31. |
| [15] | Cai P, Schiavetti M, De Michele G, et al. Quantitative estimation of bubble size in PFBC[J]. Powder Technology, 1994, 80(2): 99-109. |
| [16] | Hoffmann A C, Yates J G. Experimental observations of fluidized beds at elevated pressures[J]. Chemical Engineering Communications, 1986, 41(1/2/3/4/5/6): 133-149. |
| [17] | Weimer A W, Quarderer G J. On dense phase voidage and bubble size in high pressure fluidized beds of fine powders[J]. AIChE Journal, 1985, 31(6): 1019-1028. |
| [18] | Zhu X L, Liu Y B, Jiang X J, et al. Effects of pressure and particle size on bubble behaviors in a pseudo 2D pressured fluidized bed with Geldart A/B, B and D particles[J]. Chemical Engineering Journal, 2023, 470: 143904. |
| [19] | Zhu X L, Liu Y B, Li Y H, et al. Bubble behaviors of geldart B particle in a pseudo two-dimensional pressurized fluidized bed[J]. Particuology, 2023, 79: 121-132. |
| [20] | Fu L L, Zhang Q J, Xu G W, et al. Pressure fluctuations in a gas-solid fluidized bed at temperatures up to 1650 ℃[J]. Chemical Engineering Journal, 2023, 468: 143806. |
| [21] | Alghamdi Y A, Peng Z B, Luo C M, et al. Systematic study of pressure fluctuation in the riser of a dual inter-connected circulating fluidized bed: using single and binary particle species[J]. Processes, 2019, 7(12): 890. |
| [22] | Li J H, Kwauk M. Particle-Fluid Two-Phase Flow: the Energy-Minimization Multi-Scale Method[M]. Beijing: Metallurgical Industryl Press, 1994. |
| [23] | Li J, Kuipers J A M. Effect of pressure on gas-solid flow behavior in dense gas-fluidized beds: a discrete particle simulation study[J]. Powder Technology, 2002, 127(2): 173-184. |
| [24] | Li J, Kuipers J A M. On the origin of heterogeneous structure in dense gas-solid flows[J]. Chemical Engineering Science, 2005, 60(5): 1251-1265. |
| [25] | Rietema K, Piepers H W. The effect of interparticle forces on the stability of gas-fluidized beds(Ⅰ): Experimental evidence[J]. Chemical Engineering Science, 1990, 45(6): 1627-1639. |
| [26] | Guo Q, Bordbar A, Ma L K, et al. A CFD-DEM study of the solid-like and fluid-like states in the homogeneous fluidization regime of Geldart A particles[J]. AIChE Journal, 2022, 68(1): e17420. |
| [27] | Morris J D, Daood S S, Chilton S, et al. Mechanisms and mitigation of agglomeration during fluidized bed combustion of biomass: a review[J]. Fuel, 2018, 230: 452-473. |
| [28] | Rhodes M J, Wang X S, Forsyth A J, et al. Use of a magnetic fluidized bed in studying Geldart Group B to A transition[J]. Chemical Engineering Science, 2001, 56(18): 5429-5436. |
| [29] | Molerus O. Interpretation of Geldart's type A, B, C and D powders by taking into account interparticle cohesion forces[J]. Powder Technology, 1982, 33(1): 81-87. |
| [30] | Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. |
| [31] | Beetstra R, Nijenhuis J, Ellis N, et al. The influence of the particle size distribution on fluidized bed hydrodynamics using high-throughput experimentation[J]. AIChE Journal, 2009, 55(8): 2013-2023. |
| [32] | Barreto G F, Yates J G, Rowe P N. The effect of pressure on the flow of gas in fluidized beds of fine particles[J]. Chemical Engineering Science, 1983, 38(12): 1935-1945. |
| [33] | Schweinzer J, Molerus O. Bubble flow in pressurized gas/solid fluidized beds[J]. Chemical Engineering & Technology, 1987, 10(1): 368-375. |
| [34] | Godlieb W, Deen N, Kuipers J. Discrete particle simulations of high pressure fluidization[C]//Proceedings of the 17th International Congress of Chemical and Process Engineering, (CHISA 2006) Prague, Czech Republic, 2006. |
| [35] | Alavi Shoushtari N, Hosseini S A, Soleimani R. Investigation of segregation of large particles in a pressurized fluidized bed with a high velocity gas: a discrete particle simulation[J]. Powder Technology, 2013, 246: 398-412. |
| [36] | Zhang J P, Li Y, Fan L S. Numerical studies of bubble and particle dynamics in a three-phase fluidized bed at elevated pressures[J]. Powder Technology, 2000, 112(1/2): 46-56. |
| [37] | 李玥嬛, 朱晓丽, 王振波, 等. 基于CFD-DEM方法的加压鼓泡床气固流动特性数值模拟[J]. 排灌机械工程学报, 2024, 42(6): 570-575. |
| Li Y H, Zhu X L, Wang Z B, et al. Numerical simulation of gas-solid flow characteristics in pressurized bubbling fluidized bed based on CFD-DEM method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2024, 42(6): 570-575. | |
| [38] | Xu H B, Shen S Y, Wang W Y, et al. Numerical simulation study on mixing characteristics of binary Geldart-D particles in a pressurized fluidized bed[J]. Powder Technology, 2022, 410: 117838. |
| [39] | Garg R, Galvin J, Li T W, et al. Open-source MFIX-DEM software for gas-solids flows(partⅠ): Verification studies[J]. Powder Technology, 2012, 220: 122-137. |
| [40] | Li T W, Garg R, Galvin J, et al. Open-source MFIX-DEM software for gas-solids flows(partⅡ): Validation studies[J]. Powder Technology, 2012, 220: 138-150. |
| [41] | Li T W, Rabha S, Verma V, et al. Experimental study and discrete element method simulation of Geldart Group A particles in a small-scale fluidized bed[J]. Advanced Powder Technology, 2017, 28(11): 2961-2973. |
| [42] | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. New York: Academic Press, 1994. |
| [43] | Han C, Wang H, Yang L H, et al. Comparison and validation of various drag models for fluidization characteristics of bubble fluidized beds with a high-speed particle image velocimetry experiment[J]. Physics of Fluids, 2023, 35(12): 123330. |
| [44] | Ma H Q, Zhou L Y, Liu Z H, et al. A review of recent development for the CFD-DEM investigations of non-spherical particles[J]. Powder Technology, 2022, 412: 117972. |
| [45] | Wang S, Hu C S, Luo K, et al. Multi-scale numerical simulation of fluidized beds: model applicability assessment[J]. Particuology, 2023, 80: 11-41. |
| [46] | 宋加龙. 加压流化床气固流动特性研究[D]. 南京: 东南大学, 2019. |
| Song J L. The effect of elevated pressure on the fluidiaztion characteristics in gas-solid fluidized bed[D]. Nanjing: Southeast University, 2019. | |
| [47] | Yates Y G, Cheesman D J, Sergeev Y A. Experimental observations of voidage distribution around bubbles in a fluidized bed[J]. Chemical Engineering Science, 1994, 49(12): 1885-1895. |
| [48] | Busciglio A, Vella G, Micale G, et al. Analysis of the bubbling behaviour of 2D gas solid fluidized beds (partⅠ): Digital image analysis technique[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 398-413. |
| [49] | 石孝刚, 赵国静, 吴迎亚, 等. 挡板鼓泡床内气泡特性的CFD模拟分析[J]. 石油学报(石油加工), 2020, 36(1): 113-120. |
| Shi X G, Zhao G J, Wu Y Y, et al. CFD simulation of bubbles behavior in baffled bubbling fluidized bed[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 113-120. | |
| [50] | Wu W Q, Duan L B, Li L, et al. The gas interchange between bubble and emulsion phases in a pressurized fluidized bed by computational fluid dynamics simulations[J]. Industrial & Engineering Chemistry Research, 2021, 60(10): 4142-4152. |
| [51] | Galvin J E, Benyahia S. The effect of cohesive forces on the fluidization of aeratable powders[J]. AIChE Journal, 2014, 60(2): 473-484. |
| [52] | Ye M, van der Hoef M A, Kuipers J A M. The effects of particle and gas properties on the fluidization of Geldart A particles[J]. Chemical Engineering Science, 2005, 60(16): 4567-4580. |
| [53] | Moreno-Atanasio R, Xu B H, Ghadiri M. Computer simulation of the effect of contact stiffness and adhesion on the fluidization behaviour of powders[J]. Chemical Engineering Science, 2007, 62(1/2): 184-194. |
| [54] | Hossain N, Metcalfe R. Performance analysis of a 2D numerical model in estimating minimum fluidization velocity for fluidized beds[J]. Particuology, 2023, 77: 116-127. |
| [55] | Nakamura M, Hamada Y, Toyama S, et al. An experimental investigation of minimum fluidization velocity at elevated temperatures and pressures[J]. The Canadian Journal of Chemical Engineering, 1985, 63(1): 8-13. |
| [56] | Zhu Z P, Na Y J, Lu Q G. Effect of pressure on minimum fluidization velocity[J]. Journal of Thermal Science, 2007, 16(3): 264-269. |
| [57] | Feng R T, Li J G, Cheng Z H, et al. Influence of particle size distribution on minimum fluidization velocity and bed expansion at elevated pressure[J]. Powder Technology, 2017, 320: 27-36. |
| [58] | Nie W, Dong L B, Hao Z H, et al. Influence of pressure on fundamental characteristics in gas fluidized beds of coarse particle[J]. International Journal of Chemical Reactor Engineering, 2019, 17(2): 20170217. |
| [59] | Xu H B, Wang W Y, Zhong W Q, et al. Experimental study of fluidization characteristics of Geldart-D particles in pressurized bubbling fluidized bed[J]. Advanced Powder Technology, 2022, 33(3): 103453. |
| [60] | Wen C Y, Yu Y H, Mechanics of fluidization [J]. Chemical Engineering Progress, Symposium Series, 1966, 62(1): 100-111. |
| [61] | 刘明辉, 丁忠伟, 张同旺, 等. 气-固加压流化床压力脉动信号的分析[J]. 计算机与应用化学, 2011, 28(10): 1281-1284. |
| Liu M H, Ding Z W, Zhang T W, et al. Analysis of pressure fluctuation signals in a pressured fluidized bed[J]. Computers and Applied Chemistry, 2011, 28(10): 1281-1284. | |
| [62] | Li J, Kuipers J A M. Effect of competition between particle-particle and gas-particle interactions on flow patterns in dense gas-fluidized beds[J]. Chemical Engineering Science, 2007, 62(13): 3429-3442. |
| [63] | Ostermeier P, Fischer F, Fendt S, et al. Coarse-grained CFD-DEM simulation of biomass gasification in a fluidized bed reactor[J]. Fuel, 2019, 255: 115790. |
| [1] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [2] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [3] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [4] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [5] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [6] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [7] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [8] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [9] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [10] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [11] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [12] | 杨开源, 陈锡忠. 颗粒破碎的离散元及有限离散元模拟方法比较[J]. 化工学报, 2025, 76(9): 4398-4411. |
| [13] | 王一飞, 李玉星, 欧阳欣, 赵雪峰, 孟岚, 胡其会, 殷布泽, 郭雅琦. 基于裂尖减压特性的CO2管道断裂扩展数值计算[J]. 化工学报, 2025, 76(9): 4683-4693. |
| [14] | 曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448. |
| [15] | 段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号