化工学报

• •    

数字孪生驱动的换热器内外漏量化方法研究

蔡秀全1,2(), 王金江1,2(), 沈登海4, 李伟3, 张凤丽3   

  1. 1.中国石油大学(北京)安全与海洋工程学院,北京 102249
    2.国家市场监督管理总局油气生产装备质量检测与健康诊断重点实验室,北京 102249
    3.中国石油大学(北京)机械与储运工程学院,北京 102249
    4.国家管网集团联合管道有限责任公司西部分公司,乌鲁木齐 830011
  • 收稿日期:2025-09-27 修回日期:2025-10-13 出版日期:2025-11-07
  • 通讯作者: 王金江
  • 作者简介:蔡秀全(1998—),男,博士研究生,2023310526@student.cup.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(52234007)

Research on quantification methods for internal and external leakage in heat exchangers driven by digital twins

Xiuquan CAI1,2(), Jinjiang WANG1,2(), Denghai SHEN4, Wei LI3, FengLi ZHANG3   

  1. 1.College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China
    2.Key Laboratory of Oil and Gas Production Equipment Quality Inspection and Health Diagnosis, State Administration for Market Regulation, Beijing 102249, China
    3.College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
    4.West Pipeline Co. Ltd. of National Petroleum and Natural Gas Pipe Network Group Co. , Ltd. , Urumqi 830011, Xinjiang, China
  • Received:2025-09-27 Revised:2025-10-13 Online:2025-11-07
  • Contact: Jinjiang WANG

摘要:

针对换热器结构复杂、内漏信号微弱,多变工况下换热器难以实现实时内外漏量化感知的问题,提出了一种数字孪生驱动的换热器内外漏量化方法。首先,根据换热器结构参数,结合正常工况下的温度流量监测数据构建高保真有限元模型;其次应用基于本征正交分解(Proper Orthogonal Decomposition,POD)的径向基算法(Radial Basis Function,RBF)进行模型降阶,构建换热器POD-RBF降阶模型,实现换热器关键工艺参数的实时预测;最后,利用传热系数公式推导的换热器内漏及外漏的泄漏量化模型,结合降阶模型计算结果与实际监测数据,实现了换热器内外漏的智能量化。经换热器泄漏试验台试验证明,通过在换热器冷热流体进出口采集压力、流量、温度的运行数据结合换热器POD-RBF降阶模型,可实现全部试验工况的泄漏量化,对内漏量化误差平均值为2.61%,外漏量化误差平均值为2.91%,为提升换热器本质安全分析水平提供了新思路。

关键词: 数字孪生, 泄漏监测, 泄漏量化, 降阶模型

Abstract:

To address the challenges of quantifying internal and external leakage in heat exchangers under complex structures, weak internal leakage signals, and variable operating conditions, a digital twin-driven quantification method for both types of leakage is proposed. Firstly, a high-fidelity finite element model is constructed based on the heat exchanger's structural parameters, incorporating temperature and flow monitoring data from normal operating conditions. Secondly, a radial basis function algorithm based on intrinsic orthogonal decomposition is applied for model order reduction, establishing a POD-RBF reduced-order model for the heat exchanger to enable real-time prediction of critical process parameters. Finally, leakage quantification models for both internal and external leaks are derived using heat transfer coefficient formulas. By integrating the reduced-order model's computational results with actual monitoring data, intelligent quantification of both internal and external leaks in the heat exchanger is achieved. Testing on the heat exchanger leakage test rig demonstrated that by integrating operational data (pressure, flow rate, temperature) collected at the inlet and outlet of the heat exchanger's hot and cold fluids with the POD-RBF reduced-order model, leakage quantification is achievable across all test conditions. The average quantification error for internal leakage was 2.61%, while that for external leakage was 2.91%. This approach offers novel insights for enhancing the intrinsic safety analysis of heat exchangers.

Key words: digital twin, leakage monitoring, leakage quantification, reduced-order modelling

中图分类号: