化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4218-4228.DOI: 10.11949/0438-1157.20230707
籍帅航1,3(), 王金江1,2,3(
), 蔡睿1,3, 孙雪皓2,3, 葛伟凤4
收稿日期:
2023-07-07
修回日期:
2023-09-10
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
王金江
作者简介:
籍帅航(1999—),男,博士研究生,jishh@student.cup.edu.cn
基金资助:
Shuaihang JI1,3(), Jinjiang WANG1,2,3(
), Rui CAI1,3, Xuehao SUN2,3, Weifeng GE4
Received:
2023-07-07
Revised:
2023-09-10
Online:
2023-10-25
Published:
2023-12-22
Contact:
Jinjiang WANG
摘要:
管壳式热交换器是能源系统中的重要组成部分,长时间的运行容易在导热管内造成结垢故障,导致热交换器传热效率下降、流动阻力增加、耗能增加、系统压力下降等问题。结垢故障往往隐藏在设备内部,通过运行数据监测或者仿真手段往往不足以感知和预测多工况下的设备状态,数字化的热交换器状态监测技术为解决问题提供了新思路,但存在数字孪生体难以构建、降阶效果不理想、结垢数据难以获取等问题。为了能够建立数字孪生驱动的热交换器高保真降阶模型,提出了一种基于本征正交分解的径向基自适应模型降阶方法。基于物理信息的自适应采样算法采集更有效的样本数据,利用POD-RBF建立高保真降阶模型,开展热交换器的结垢故障的仿真实验,通过BP神经网络进行热交换器的结垢感知和预测。实验结果表明所建立的自适应采样降阶模型与不使用采样的降阶模型相比求解效率提高了1倍,与全阶模型的误差在4%左右,通过降阶模型快速生成更符合物理机理的结垢数据,预测误差保持在0.0554 mm左右,能有效地对换热器的结垢进行感知和预测。
中图分类号:
籍帅航, 王金江, 蔡睿, 孙雪皓, 葛伟凤. 数字孪生驱动的热交换器降阶建模及智能感知方法研究[J]. 化工学报, 2023, 74(10): 4218-4228.
Shuaihang JI, Jinjiang WANG, Rui CAI, Xuehao SUN, Weifeng GE. Research on reduced order modeling and intelligent sensing method for heat exchangers driven by digital twin[J]. CIESC Journal, 2023, 74(10): 4218-4228.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
壳体内径/m | 0.160 | 铝密度/(kg/m3) | 2719 |
壳体厚度/m | 0.01 | 铝比热容/(J/(kg·℃)) | 871 |
换热面积/m2 | 0.78 | 铝热导率/(W/(m·℃)) | 202.4 |
换热管长/m | 1 | 液态水密度/(kg/m3) | 998.2 |
换热管外径/m | 0.012 | 液态水比热容/(J/(kg·℃)) | 4182 |
换热管壁厚/m | 0.0016 | 液态水热导率/(W/(m·℃)) | 0.6 |
换热管排列方式 | 正三角形 | 液态水动力黏度/(Pa·s) | 0.001003 |
换热管数量 | 26 | 碳酸钙密度/(kg/m3) | 2800 |
折流板数量 | 3 | 碳酸钙比热容/(J/(kg·℃)) | 856 |
碳酸钙热导率/(W/(m·℃)) | 2.25 |
表1 结构参数及物性参数
Table 1 Structural parameter and physical property parameters
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
壳体内径/m | 0.160 | 铝密度/(kg/m3) | 2719 |
壳体厚度/m | 0.01 | 铝比热容/(J/(kg·℃)) | 871 |
换热面积/m2 | 0.78 | 铝热导率/(W/(m·℃)) | 202.4 |
换热管长/m | 1 | 液态水密度/(kg/m3) | 998.2 |
换热管外径/m | 0.012 | 液态水比热容/(J/(kg·℃)) | 4182 |
换热管壁厚/m | 0.0016 | 液态水热导率/(W/(m·℃)) | 0.6 |
换热管排列方式 | 正三角形 | 液态水动力黏度/(Pa·s) | 0.001003 |
换热管数量 | 26 | 碳酸钙密度/(kg/m3) | 2800 |
折流板数量 | 3 | 碳酸钙比热容/(J/(kg·℃)) | 856 |
碳酸钙热导率/(W/(m·℃)) | 2.25 |
项目 | 入口温度/℃ | 入口压力/MPa | 流量/(m3/h) | 介质 |
---|---|---|---|---|
管程 | 60 | 0.1 | 0.8 | 水 |
壳程 | 25 | 0.1 | 0.5 | 水 |
表2 热交换器仿真工况设置
Table 2 Heat exchanger simulation conditions settings
项目 | 入口温度/℃ | 入口压力/MPa | 流量/(m3/h) | 介质 |
---|---|---|---|---|
管程 | 60 | 0.1 | 0.8 | 水 |
壳程 | 25 | 0.1 | 0.5 | 水 |
采样方法 | 构建快照 时间/s | 模型训练 时间/s | 模型推理 时间/s | MAPE |
---|---|---|---|---|
不使用采样 | 4.2087 | 0.0656 | 0.0010 | 0.0425 |
LHS | 136.6628 | 0.0330 | 0.0010 | 0.0430 |
RS | 3.8994 | 0.0337 | 0.0010 | 0.2585 |
PAS | 3.9554 | 0.0331 | 0.0010 | 0.0408 |
表3 降阶模型性能对比
Table 3 Model performance comparison of reduced order models
采样方法 | 构建快照 时间/s | 模型训练 时间/s | 模型推理 时间/s | MAPE |
---|---|---|---|---|
不使用采样 | 4.2087 | 0.0656 | 0.0010 | 0.0425 |
LHS | 136.6628 | 0.0330 | 0.0010 | 0.0430 |
RS | 3.8994 | 0.0337 | 0.0010 | 0.2585 |
PAS | 3.9554 | 0.0331 | 0.0010 | 0.0408 |
序号 | 奇异值 | 奇异值累计值占比/% |
---|---|---|
1 | 3.4356×10-3 | 99.25 |
2 | 2.3597×10-5 | 99.94 |
3 | 1.9781×10-6 | 99.99 |
4 | 1.2714×10-7 | 99.99 |
表4 奇异值累计值占比
Table 4 Percentage of cumulative values of singular values
序号 | 奇异值 | 奇异值累计值占比/% |
---|---|---|
1 | 3.4356×10-3 | 99.25 |
2 | 2.3597×10-5 | 99.94 |
3 | 1.9781×10-6 | 99.99 |
4 | 1.2714×10-7 | 99.99 |
工况 | 实际厚度/mm | 预测厚度/mm | 相对误差/% |
---|---|---|---|
1 | 1.794 | 1.736 | 3.23 |
2 | 1.347 | 1.394 | 3.48 |
3 | 0.824 | 0.867 | 5.21 |
4 | 0.198 | 0.185 | 6.57 |
表5 基于BP模型的热交换器结垢厚度预测结果
Table 5 Prediction results of fouling thickness in heat exchangers based on BP model
工况 | 实际厚度/mm | 预测厚度/mm | 相对误差/% |
---|---|---|---|
1 | 1.794 | 1.736 | 3.23 |
2 | 1.347 | 1.394 | 3.48 |
3 | 0.824 | 0.867 | 5.21 |
4 | 0.198 | 0.185 | 6.57 |
1 | 李宁. 天然气管道压气站燃机排气余热用于进气冷却系统设计及其经济性分析[D]. 北京: 中国石油大学(北京), 2019. |
Li N. Design and economic analysis of gas turbine exhaust waste heat used in intake cooling system of natural gas pipeline compressor station[D]. Beijing: China University of Petroleum, 2019. | |
2 | 杨政华. 基于频域设计方法的柔性换热网络旁路控制系统研究[D]. 北京: 中国石油大学(北京), 2019. |
Yang Z H. Research on bypass control system of flexible heat exchanger network based on frequency domain design method[D]. Beijing: China University of Petroleum, 2019. | |
3 | 杨鹏飞. 常减压装置及其换热网络的柔性优化[D]. 北京: 中国石油大学(北京), 2020. |
Yang P F. Flexibility optimization of atmospheric and vacuum distillation unit and its heat exchange network[D]. Beijing: China University of Petroleum, 2020. | |
4 | 马仲麟. 带换热式的旋风分离器性能研究[D]. 北京: 中国石油大学(北京), 2021. |
Ma Z L. Performance research of cyclone separator with heat exchange[D]. Beijing: China University of Petroleum, 2021. | |
5 | 王右磊. 级联冷却系统优化及级联温度分割点确定方法研究[D]. 北京: 中国石油大学(北京), 2021. |
Wang Y L. Study on optimization of cascade cooling system and determination of cascade temperature split point[D]. Beijing: China University of Petroleum, 2021. | |
6 | 林林. 管壳式换热器结垢和泄漏的传热特性及预测研究[D]. 大庆: 东北石油大学, 2014. |
Lin L. Study on heat transfer characteristics and prediction of scaling and leakage in shell-and-tube heat exchanger[D]. Daqing: Northeast Petroleum University, 2014. | |
7 | 张翠翠. 循环水的结垢监测以及有机污水处理方法研究[D]. 武汉: 华中科技大学, 2011. |
Zhang C C. Scaling monitoring of circulating water and study on organic sewage treatment method[D]. Wuhan: Huazhong University of Science and Technology, 2011. | |
8 | 郭亮, 张煜. 数字孪生在制造中的应用进展综述[J]. 机械科学与技术, 2020, 39(4): 590-598. |
Guo L, Zhang Y. Review on application progress of digital twin in manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 590-598. | |
9 | 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J]. 计算机集成制造系统, 2019, 25(10): 2405-2418. |
Tao F, Ma X, Hu T L, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405-2418. | |
10 | 曲宁. 板式换热器传热与流动分析[D]. 济南: 山东大学, 2005. |
Qu N. Heat transfer and flow analysis of plate heat exchanger[D]. Jinan: Shandong University, 2005. | |
11 | He R, Chen G M, Dong C, et al. Data-driven digital twin technology for optimized control in process systems[J]. ISA Transactions, 2019, 95: 221-234. |
12 | Fguiri A, Marvillet C, Jeday M R. Estimation of fouling resistance in a phosphoric acid/steam heat exchanger using inverse method[J]. Applied Thermal Engineering, 2021, 192: 116935. |
13 | Al Hadad W, Schick V, Maillet D. Fouling detection in a shell and tube heat exchanger using variation of its thermal impulse responses: methodological approach and numerical verification[J]. Applied Thermal Engineering, 2019, 155: 612-619. |
14 | Davoudi E, Vaferi B. Applying artificial neural networks for systematic estimation of degree of fouling in heat exchangers[J]. Chemical Engineering Research and Design, 2018, 130: 138-153. |
15 | Jonsson G R, Lalot S, Palsson O P, et al. Use of extended Kalman filtering in detecting fouling in heat exchangers[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2643-2655. |
16 | Delrot S, Guerra T M, Dambrine M, et al. Fouling detection in a heat exchanger by observer of Takagi-Sugeno type for systems with unknown polynomial inputs[J]. Engineering Applications of Artificial Intelligence, 2012, 25(8): 1558-1566. |
17 | Afgan N H, Carvalho M G. Knowledge-based expert system for fouling assessment of industrial heat exchangers[J]. Applied Thermal Engineering, 1996, 16(3): 203-208. |
18 | Ingimundardóttir H, Lalot S. Detection of fouling in a cross-flow heat exchanger using wavelets[J]. Heat Transfer Engineering, 2011, 32(3/4): 349-357. |
19 | Cid N, Patiño D, Porteiro J, et al. Validation of a fouling measurement procedure[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-8. |
20 | Withers P M. Ultrasonic, acoustic and optical techniques for the non-invasive detection of fouling in food processing equipment[J]. Trends in Food Science & Technology, 1996, 7(9): 293-298. |
21 | Guépié B K, Grall-Maës E, Beauseroy P, et al. Reliable leak detection in a heat exchanger of a sodium-cooled fast reactor[J]. Annals of Nuclear Energy, 2020, 142: 107357. |
22 | 高士根, 周敏, 郑伟, 等. 基于数字孪生的高端装备智能运维研究现状与展望[J]. 计算机集成制造系统, 2022, 28(7): 1953-1965. |
Gao S G, Zhou M, Zheng W, et al. Intelligent operation and maintenance for advanced equipment based on digital twin: challenges and future[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 1953-1965. | |
23 | Zhuang C B, Liu J H, Xiong H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 1149-1163. |
24 | Fuhg J N, Fau A, Nackenhorst U. State-of-the-art and comparative review of adaptive sampling methods for kriging[J]. Archives of Computational Methods in Engineering, 2021, 28(4): 2689-2747. |
25 | 吕小龙, 黄丹, 姜冬菊. 基于POD-RBF代理模型的迭代更新反演方法[J]. 计算力学学报, 2022, 39(4): 506-511. |
Lyu X L, Huang D, Jiang D J. Iterative updating inversion method based on POD-RBF surrogate model[J]. Chinese Journal of Computational Mechanics, 2022, 39(4): 506-511. | |
26 | Awais M, Bhuiyan A A. Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 141: 580-603. |
27 | 许晓红, 郭建辉, 雷勇刚, 等. 双壳程管壳式换热器的传热和阻力特性[J]. 热能动力工程, 2018, 33(12): 20-25. |
Xu X H, Guo J H, Lei Y G, et al. Heat transfer and flow resistance performance of a double shell-pass shell-and-tube heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(12): 20-25. | |
28 | 钱剑峰, 吴学慧, 孙德兴, 等. 管壳式污水换热器结垢厚度对流动换热的影响[J]. 流体机械, 2007, 35(1): 74-78. |
Qian J F, Wu X H, Sun D X, et al. Effect on fluxion and heat transfer due to the thickness of soft dirt in shell sewage heat exchanger[J]. Fluid Machinery, 2007, 35(1): 74-78. | |
29 | 朱文琦. 考虑结垢问题的换热网络优化[D]. 北京: 中国石油大学(北京), 2019. |
Zhu W Q. Optimization of heat exchange network considering scaling problem[D]. Beijing: China University of Petroleum, 2019. | |
30 | 陈鹤天. 常减压蒸馏流程模拟及传热潜力分析[D]. 北京: 中国石油大学(北京), 2018. |
Chen H T. Simulation of atmospheric and vacuum distillation process and analysis of heat transfer potential[D]. Beijing: China University of Petroleum, 2018. | |
31 | 谢洪虎, 江楠. 管壳式换热器壳程流体流动与换热的数值模拟[J]. 化学工程, 2009, 37(9): 9-12. |
Xie H H, Jiang N. Numerical simulation of shell-side flow and heat transfer characteristics in shell-and-tube heat exchanger[J]. Chemical Engineering (China), 2009, 37(9): 9-12. | |
32 | 陶文铨. 数值传热学[M]. 2版. 西安:西安交通大学出版社, 2001. |
Tao W Q. Numerical Heat Transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001. |
[1] | 明迁, 高逸, 胡剑, 李盛杰, 王金江. 热交换器泄漏故障虚拟感知方法研究[J]. 化工学报, 2023, 74(4): 1836-1846. |
[2] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[3] | 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962. |
[4] | 杨静, 林振康, 汤君, 樊铖, 孙克宁. 电池系统的故障特征以及多故障的诊断与识别[J]. 化工学报, 2022, 73(8): 3394-3405. |
[5] | 孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144. |
[6] | 张成, 潘立志, 李元. 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73(2): 827-837. |
[7] | 张凤丽, 潘辉, 王金江. 基于多元状态估计的热交换器多参数关联预警方法[J]. 化工学报, 2022, 73(2): 814-826. |
[8] | 张弛, 李浩, 胡海涛, 朱翀, 张玉莹, 南国鹏, 舒悦. 基于自动特征工程的飞行器轴承故障诊断[J]. 化工学报, 2021, 72(S1): 430-436. |
[9] | 沈志杰, 闵敬春. 薄膜输运性质对全热交换器结露特性影响[J]. 化工学报, 2020, 71(S2): 32-38. |
[10] | 杨新, 麻哲瑞, 申赫男, 陈鸿伟. 基于多尺度特征能量-核极限学习机的双循环流化床气流堵塞故障智能诊断[J]. 化工学报, 2019, 70(7): 2616-2625. |
[11] | 邓佳伟, 邓晓刚, 曹玉苹, 张晓玲. 基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法[J]. 化工学报, 2019, 70(7): 2594-2605. |
[12] | 彭开香, 张传放, 马亮, 董洁, 焦瑞华, 唐鹏. 面向系统层级的复杂工业过程全息故障诊断[J]. 化工学报, 2019, 70(2): 590-598. |
[13] | 顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 736-749. |
[14] | 翟坤, 杜文霞, 吕锋, 辛涛, 句希源. 一种改进的动态核主元分析故障检测方法[J]. 化工学报, 2019, 70(2): 716-722. |
[15] | 鲁春燕, 李炜. 基于深度置信网络的炼化空压机故障诊断方法[J]. 化工学报, 2019, 70(2): 757-763. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 234
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 302
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||