化工学报

• •    

基于时序-空间双流卷积神经网络的炼化污水厂进水COD预测模型

陈霖(), 胡方杰, 王庆宏, 陈春茂()   

  1. 中国石油大学(北京)化学工程与环境学院,重质油全国重点实验室,北京 102249
  • 收稿日期:2025-10-15 修回日期:2025-12-23 出版日期:2026-01-13
  • 通讯作者: 陈春茂
  • 作者简介:陈霖(1997—),男,博士研究生,13121196975@163.com
  • 基金资助:
    中国石油天然气股份有限公司十四五前瞻性基础性战略性技术研究项目(2022DJ6904)

Prediction model for COD in petrochemical wastewater influent based on temporal-spatial dual-stream convolutional neural network

Lin CHEN(), Fangjie HU, Qinghong WANG, Chunmao CHEN()   

  1. State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
  • Received:2025-10-15 Revised:2025-12-23 Online:2026-01-13
  • Contact: Chunmao CHEN

摘要:

炼化污水厂进水化学需氧量(COD)波动幅度大,影响污水处理工艺的稳定运行和水质达标,但现有预测方法难以整合其时序及空间关联特征,无法实现高效预测。本研究提出了一种时序-空间双流卷积神经网络(TS-DSCNN)模型。该模型通过并行双流架构,分别利用一维卷积核挖掘COD时序规律,并挖掘瞬时水质参数电导率(EC)、氨氮(NH3-N)、悬浮固体(SS)与COD的关联关系,引入注意力机制自适应融合双流特征。实验结果表明,TS-DSCNN模型测试集决定系数(R2)达0.89,均方根误差(RMSE)为16 mg/L,性能显著优于长短时记忆网络(R2 = 0.81、RMSE = 20 mg/L)、卷积神经网络(R2 = 0.78、RMSE = 19 mg/L)等基准模型。消融实验结合沙普利可加解释(SHAP)验证了时序流的主导作用与双流架构的有效性,时序-空间特征深度融合(R2 = 0.89)优于单一空间流(R2 = 0.75)、单一时序流(R2 = 0.81)及简单特征拼接模型(R2 = 0.84)。SHAP分析与注意力权重分布(时序流权重集中于0.8~1.0,空间流权重集中于0.0~0.2)相互印证,明确时序流为预测主导因素、空间流为辅助因素。30天现场验证表明模型可有效跟踪COD波动趋势,多数时段平均绝对百分比误差低于10%,仅在水质剧烈波动时存在局部误差,整体稳定性与泛化性良好。本研究可以为污水处理过程的智能预警与优化调控提供有效技术支撑。

关键词: 石油, 污染, 水质预测, 神经网络, SHAP分析

Abstract:

Significant fluctuations in the influent Chemical Oxygen Demand (COD) at petrochemical wastewater treatment plants jeopardize process stability and effluent compliance, while existing prediction methods are unable to synergistically capture both its temporal dynamics and spatial correlations. To address this issue, this study proposes a Temporal-Spatial Dual-Stream Convolutional Neural Network (TS-DSCNN) model. Employing a parallel dual-stream architecture, the model leverages 1D convolution to respectively extract the temporal patterns of COD and the correlation features of key instantaneous water quality parameters (electrical conductivity, ammonia nitrogen, and suspended solids). Additionally, an attention mechanism is introduced to adaptively fuse the features from the two streams. Experimental results demonstrate that the TS-DSCNN model achieves a coefficient of determination (R2) of 0.89 and a root mean square error (RMSE) of 16 mg/L on the test set, outperforming benchmark models significantly—including Long Short-Term Memory (R2 = 0.81, RMSE = 20 mg/L) and Convolutional Neural Network (R2 = 0.78, RMSE = 19 mg/L). Ablation experiments and Shapley Additive Explanation (SHAP) interpretability analysis jointly verify the dominant role of the temporal stream and the effectiveness of the dual-stream architecture: the deep fusion of temporal-spatial features (R2 = 0.89) outperforms the single spatial stream (R2 = 0.75), single temporal stream (R2 = 0.81), and simple feature concatenation model (R2 = 0.84). SHAP analysis is consistent with the attention weight distribution (temporal stream weights concentrated in the range of 0.8~1.0, spatial stream weights in 0.0~0.2), confirming that the temporal stream serves as the dominant factor in prediction while the spatial stream plays an auxiliary role. A 30-day field verification shows that the model can effectively track the fluctuation trend of COD, with the mean absolute percentage error below 10% in most periods. Only localized errors occur during severe water quality fluctuations, indicating good overall stability and generalization ability. This study provides effective technical support for intelligent early warning and optimal regulation in wastewater treatment processes.

Key words: petroleum, pollution, water quality prediction, neural network, SHAP analysis

中图分类号: