化工学报

• •    

基于机器学习的改型歧管式微通道热沉流动传热特性多目标优化

汤松臻1(), 张飞杨1, 晏稷1, 张牧樵2, 郭明1()   

  1. 1.郑州大学机械与动力工程学院,河南 郑州 450001
    2.汉阳大学BK21 FOUR ERICA-ACE中心,韩国 安山 15588
  • 收稿日期:2025-11-03 修回日期:2025-12-31 出版日期:2026-01-21
  • 通讯作者: 郭明
  • 作者简介:汤松臻(1991—),男,博士,教授,sztang@zzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52376078);河南省重点研发专项(241111320900)

Multi objective optimization of flow and heat transfer characteristics of modified manifold microchannel heat sink based on machine learning

Songzhen TANG1(), Feiyang ZHANG1, Ji YAN1, Muqiao ZHANG2, Ming GUO1()   

  1. 1.School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
    2.BK21 FOUR ERICA-ACE center, Hanyang University,Ansan 15588, Korea
  • Received:2025-11-03 Revised:2025-12-31 Online:2026-01-21
  • Contact: Ming GUO

摘要:

针对超高热通量电子设备的散热需求,开展数值模拟研究了一种改型微通道热沉的流动与传热特性,分析了通道高度和宽度对其综合性能的影响。建立了遗传算法优化的最小二乘支持向量回归预测模型,采用多目标粒子群算法对热沉的几何构型进行优化,并借助灰色关联分析-多准则妥协解排序法与熵权TOPSIS方法筛选出全局最优设计。研究结果表明:相较于本文设定的原始歧管式微通道热沉基准模型(几何参数:hm1=25 μm、hm2=25 μm、wm1=200 μm、wm2=200 μm),优化方案通过增强二次涡流效应有效降低了峰值温度,使得Nusselt数(Nu)提升20.2%,压降(Δp)下降10.2%。本文所提出的优化策略为高热通量管理提供了新思路,在保证性能显著提升的同时,较大幅度降低了传统参数化方法所需的计算成本,可为新型高效微通道热沉的研发提供理论指导。

关键词: 微通道, 传热, 流动, 深度学习, 优化

Abstract:

To address the heat dissipation requirements of ultra-high heat flux electronic devices, a numerical study was conducted to investigate the flow and heat transfer characteristics of a modified microchannel heat sink, and the influence of channel height and width on its comprehensive performance was analyzed. A prediction model based on the Genetic Algorithm-optimized Least Squares Support Vector Machine was established, the Multi-Objective Particle Swarm Optimization algorithm was employed to optimize the geometric configuration of the heat sink, and the Grey Relational Analysis-VlseKriterijumska Optimizacija Kompromisno Resenje (GRA-VIKOR) and entropy-weighted Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methods were utilized to screen out the globally optimal design. The results show that: compared with the original MMCHS benchmark model established in this study (geometric parameters: hm1=25 μm, hm2=25 μm, wm1=200 μm, wm2=200 μm), the optimized scheme effectively reduces the peak temperature by enhancing the secondary vortex effect, resulting in a 20.2% increase in the Nusselt number (Nu) and a 10.2% decrease in the pressure drop (Δp). The optimization strategy proposed in this study provides new insights for high-heat-flux thermal management; while ensuring a significant improvement in performance, it greatly reduces the computational cost required by traditional parametric methods and can offer theoretical guidance for the development of novel and high-efficiency microchannel heat sinks.

Key words: microchannels, heat transfer, flow, deep learning, optimization

中图分类号: